Queuing Theory

Basic properties, Markovian models, Networks of queues, General service time distributions, Finite source models, Multiserver queues
Kendall’s Notation for Queuing Systems

A/B/X/Y/Z:

A = interarrival time distribution
B = service time distribution
 G = general (i.e., not specified); M = Markovian (exponential); D = deterministic
X = number of parallel service channels
Y = limit on system pop. (in queue + in service); default is ∞
Z = queue discipline; default is FCFS (first come first served)
 Others are LCFS, random, priority
Other Notation

Random variables:

- $X(t)$ = Number of customers in the system at time t
- S = Service time of an arbitrary customer
- W^* = Amount of time an arbitrary customer spends in the system
- W_Q^* = Amount of time an arbitrary customer spends waiting for service

Often we are most interested in the averages or expectations:

- $L = E[X(t)]$
- $W = E[W^*]$
- $L_Q = \text{Average number in the queue}$
- $W_Q = E[W_Q^*]$
- $L_S = \text{Average number in service}$
Little’s Formula

\(w_n^* \) is the time spent in the system by the \(n^{\text{th}} \) customer.

Assume these system times are uniformly finite and let
\(w = \lim_{k \to \infty} \frac{1}{k} \sum_{n=1}^{k} w_n^* \)
be the customer average time spent in the system.

Also, let
\[\overline{X} = \lim_{s \to \infty} \frac{1}{s} \int_{0}^{s} X(t) dt \]
be the time average number of jobs in the system.

Then under very general conditions,
\[\overline{X} = \lambda_a w \]
where \(\lambda_a \) is the arrival rate. This is usually written \(L = \lambda_a W \).

The mean number of customers in the system is proportional to the mean time in the system!
Heuristic Proof of Little’s Formula

Two ways to compute \(B(T) = \sum_{n=1}^{N} w_n^* = \int_0^T X(t)dt \)
Mean time in system in \((0,T)\): \(W(T) = B(T)/N = B(T)/A(T) \)
Mean number in system in \((0,T)\): \(\bar{X}(T) = B(T)/T \)

Then \(\lim_{T \to \infty} \bar{X}(T) = \lim_{T \to \infty} \frac{B(T)}{A(T)} \frac{A(T)}{T} = \lim_{T \to \infty} \lambda(T)W(T) \), or \(L = \lambda^a W \)
Other Little’s Formulae

In queue: \(L_Q = \lambda_a W_Q \)
In service: \(L_s = \lambda_a E[S] \)

and their implications…

Expected number of busy servers \(L_s = \lambda_a E[S] = \rho \)
Expected number of idle servers \# servers \(- \rho \)
Single server utilization \(L_s = \lambda_a E[S] = \rho \)
Single server prob. of empty system \(1 - \rho \)
Observation Times

\[P_n = \lim_{t \to \infty} P\{X(t) = n\}, n = 0, 1, \ldots \]

\(a_n = \) Proportion of arriving customers that find \(n \) in the system

\(d_n = \) Proportion of departing customers that leave behind \(n \) in the system

If customers arrive one at a time and are served one at a time then

\[a_n = d_n \]

But these proportions may not match the limiting probability of having \(n \) in the system (long run proportion of time that \(n \) are in the system)

However, if arrivals follow a Poisson process then \(a_n = P_n \)

This is known as \textit{PASTA (Poisson Arrivals See Time Averages)}
M/M/1 Model

Single server, Poisson arrivals (rate λ), exponential service times (rate μ)
CTMC (birth-death) model:
M/M/1 Steady-State Probabilities

\[P_n = \lim_{t \to \infty} P\{X(t) = n\}, n = 0,1,\ldots \]

Level-crossing equations:
\[\lambda P_n = \mu P_{n+1}, n = 0,1,\ldots \]

Solve for \(P_n \) in terms of \(P_0 \)
\[P_n = \left(\frac{\lambda}{\mu}\right)^n P_0, n = 1,2,\ldots \]

Then use the facts that \(\sum_{n=0}^{\infty} P_n = 1 \), \(\sum_{n=0}^{\infty} r^n = (1-r)^{-1} \) if \(r < 1 \)
and substitute \(\rho = \frac{\lambda}{\mu} \)
to get
\[P_n = \rho^n (1-\rho), n = 0,1,\ldots \text{ if } \rho < 1 \]
M/M/1 Performance Measures

Steady-state expected number of customers in the system

\[L = \sum_{n=0}^{\infty} n P_n = \frac{\rho}{1 - \rho}, \quad \text{if } \rho < 1 \]

Mean time in system

\[W = \frac{L}{\lambda_a} = \frac{1}{\mu (1 - \rho)} = \frac{1}{\mu - \lambda} \quad \text{by Little's Formula} \]

Mean time in queue

\[W_Q = W - \frac{1}{\mu} = \frac{\lambda}{\mu (\mu - \lambda)} \]

Mean number in queue

\[L_Q = \lambda W_Q = \frac{\lambda^2}{\mu (\mu - \lambda)} \]
M/M/1 Performance Measures

Distribution of time in system (FCFS)

\[P[W^* \leq x] = \sum_{n=0}^{\infty} a_n P[W^* \leq x \mid \text{arrival sees } n \text{ customers}] \]

\[= \sum_{n=0}^{\infty} (1 - \rho) \rho^n P[W^* \leq x \mid W^* \sim \text{gamma}(n+1, \mu)] \]

\[= \sum_{n=0}^{\infty} (1 - \rho) \rho^n \sum_{l=n+1}^{\infty} e^{-\mu x} (\mu x)^l / l! = 1 - e^{-\mu (1 - \rho) x}, x \geq 0 \]

Exponential with parameter \(\mu(1 - \rho) \)

Reversibility: Departure process is Poisson with rate \(\lambda \)
Finite Capacity: M/M/1/N Model

Single server, exponential service times (rate μ)
Poisson arrivals (rate λ) as long as there are $\leq N$ in the system
CTMC (birth-death) model:
M/M/1/N Steady-State Probabilities

\[P_n = \lim_{t \to \infty} P\{X(t) = n\}, \quad n = 0, 1, \ldots \]

Level-crossing equations:
\[\lambda P_n = \mu P_{n+1}, \quad n = 0, 1, \ldots, N-1 \]

Solve for \(P_n \) in terms of \(P_0 \)

Then use the facts that
\[\sum_{n=0}^{\infty} P_n = 1, \quad \sum_{n=0}^{N} r^n = \frac{1-r^{N+1}}{1-r} \quad (\text{note: } r \text{ need not be } < 1) \]

to get
\[P_n = \frac{(\lambda/\mu)^n}{1-(\lambda/\mu)^{N+1}} \left(1 - \frac{\lambda}{\mu}\right), \quad n = 0, 1, \ldots, N \]
M/M/1/N Performance Measures

(In the unlikely event that $\lambda = \mu$, for $n = 1, \ldots, N$, $P_n = P_0 = 1/(N + 1)$)

Steady-state expected number of customers in the system, L, has a “messy” closed form
Mean time in system $W = \frac{L}{\lambda_a}$ by Little's Formula

but here, λ_a is the rate of arrival into the system $\lambda_a = \lambda (1 - P_N)$

$$W_Q = W - \frac{1}{\mu} \quad L_Q = \lambda (1 - P_N) W_Q$$
Tandem Queue

If arrivals to the first server follow a Poisson process and service times are exponential, then arrivals to the second server also follow a Poisson process and the two queues behave as independent M/M/1 systems:

$$P\{n \text{ customers at server 1 and } m \text{ customers at server 2}\} = \left(\frac{\lambda}{\mu_1}\right)^n \left(1 - \frac{\lambda}{\mu_1}\right) \left(\frac{\lambda}{\mu_2}\right)^m \left(1 - \frac{\lambda}{\mu_2}\right)$$
Open Network of Queues

- k servers, customers arrive at server k from outside the system according to a Poisson process with rate r_k, independent of the other servers.
- Upon completing service at server i, customer goes to server j with probability P_{ij}, where $\sum_j P_{ij} \leq 1$.

For $j = 1, \ldots, k$, the total arrival rate to server j is $\lambda_j = r_j + \sum_{i=1}^{k} \lambda_i P_{ij}$.

The number of customers at each server is independent and

If $\lambda_j < \mu_j$ for all j, then $P\{n \text{ customers at server } j\} = \left(\frac{\lambda_j}{\mu_j}\right)^n \left(1 - \frac{\lambda_j}{\mu_j}\right)$

that is, each acts like an independent M/M/1 queue!
Closed Queuing Network

- m customers move among k servers
- Upon completing service at server i, customer goes to server j with probability P_{ij}, where $\sum_j P_{ij} = 1$
- Let π be the stationary probabilities for the Markov chain describing the sequence of servers visited by a customer:

$$\pi_j = \sum_{i=1}^{k} \pi_i P_{ij}, \quad \sum_j \pi_j = 1$$

Then the probability distribution of the number at each server is

$$P_m(n_1, n_2, \ldots, n_k) = C_m \prod_{j=1}^{k} \left(\frac{\pi_j}{\mu_j} \right)^{n_j} \quad \text{if } \sum_j n_j = m$$
CQN Performance

Computation of the normalizing constant C_m to get the stationary distribution can be lengthy; but may be mostly interested in the throughput $\lambda_m = \sum_{j=1}^{j} \lambda_m(j)$ where $\lambda_m(j)$ is the arrival rate to (and departure rate from) j.

Arrival Theorem: In the CQN with m customers, the system as seen by arrivals to server j has the same distribution as the whole system when it contains only $m-1$ customers.

This leads to mean value analysis to find $\lambda_m(j)$ along with $W_m(j) = \text{the average time a customer spends at server } j$, and $L_m(j) = \text{the average number of customers at server } j$.
Mean Value Analysis

Solve iteratively:

\[W_m(j) = \frac{1 + L_{m-1}(j)}{\mu_j} \]

\[L_m(j) = \lambda_m(j)W_m(j), \text{ where } \lambda_m(j) = \pi_j \lambda_m \]

\[\lambda_m = \frac{m}{\sum_{i=1}^{k} \pi_i W_m(i)} \quad \text{throughput} \]

Begin with \(W_1(j) = \frac{1}{\mu_j} \)
M/G/1
Best combination of tractability & usefulness

• Assumption of Poisson arrivals may be reasonable based on Poisson approximation to binomial distribution
 – many potential customers decide independently about arriving (arrival = “success”),
 - each has small probability of arriving in any particular time interval
• Probability of arrival in a small interval is approximately proportional to the length of the interval – no bulk arrivals
• Amount of time since last arrival gives no indication of amount of time until the next arrival (exponential – memoryless)
M/G/1
Best combination of tractability & usefulness

• Exponential distribution is frequently a bad model for service times
 – memorylessness
 – large probability of very short service times with occasional very long service times

• May not want to use one of the “standard” distributions for service times, either
 – in a real situation, collect data on service times and fit an empirical distribution

• Distributions of number of customers in the system and waiting time depend on service time distribution to be specified
M/G/1
Best combination of tractability & usefulness

- Assumption of Poisson arrivals may be reasonable based on Poisson approximation to binomial distribution
 - many potential customers decide independently about arriving (arrival = “success”),
 - each has small probability of arriving in any particular time interval
- Distributions of number of customers in the system and waiting time depend on service time distribution
M/G/1 Performance

How many customers? How much time?

S is the length of an arbitrary service time (random variable)
λ is the arrival rate of customers; define $\rho = \lambda E[S]$ and assume it is < 1.

Expected values can be found from generalizing Little’s formula from # customers in the system to amount of work in the system:

An arriving customer brings S time units of work:

The *time average amount of work* in the system (V)

$= \lambda \ast$ the *customer average amount of work* remaining in the system
Work Content

W_Q^* is the (random variable) waiting time in queue

Expected amount of work per customer is

$$E \left[SW_Q^* + \int_0^S (S - x) \, dx \right]$$

Work remaining

$$= E \left[SW_Q^* \right] + \frac{E \left[S^2 \right]}{2}$$

If a customer’s service time

is independent of own wait in queue, get average work in system

$$V = \lambda E \left[S \right] E \left[W_Q^* \right] + \frac{\lambda E \left[S^2 \right]}{2}$$
Mean waiting time

\(W_Q = \) Customer mean waiting time = average work in the system when a customer arrives

From PASTA, \(W_Q = V \). Therefore, (Pollaczek-Khintchine formula)

\[
W_Q = \lambda E[S]W_Q + \frac{\lambda E[S^2]}{2} \Rightarrow W_Q = \frac{\lambda E[S^2]}{2(1 - \lambda E[S])}
\]

And the other measures of performance are:

\[
L_Q = \lambda W_Q = \frac{\lambda^2 E[S^2]}{2(1 - \lambda E[S])}, W = W_Q + E[S], L = \lambda W
\]
Priority Queues

Different types of customers may differ in importance.

- Type i customers arrive according to a Poisson process with rate λ_i and require service times with distribution G_i, $i = 1, 2$.
- Type 1 customers have (nonpreemptive) priority:
 - service does not begin on a type 2 customer if there is a type 1 customer waiting.
 - If a type 1 customer arrives during a type 2 service, the service is continued to completion.

What is the average wait in queue of a type i customer, W_Q^i
Two customer types w/o priority

M/G/1 model with \(\lambda = \lambda_1 + \lambda_2 \) \(G(x) = \frac{\lambda_1}{\lambda} G_1(x) + \frac{\lambda_2}{\lambda} G_2(x) \)

Average work in system is

\[
V = \frac{\lambda E[S^2]}{2(1 - \lambda E[S])} = \frac{\lambda \left((\lambda_1 / \lambda) E[S_1^2] + (\lambda_2 / \lambda) E[S_2^2] \right)}{2 \left(1 - \lambda \left((\lambda_1 / \lambda) E[S_1] + (\lambda_2 / \lambda) E[S_2] \right) \right)}
\]

\[
= \frac{\lambda_1 E[S_1^2] + \lambda_2 E[S_2^2]}{2 \left(1 - \lambda_1 E[S_1] - \lambda_2 E[S_2] \right)}
\]

If the server is not allowed to be idle when the system is not empty, this quantity is the same for the system with priority.
Two customer types with priority

Let V^i be the average amount of type i work in the system

$$V^i = \lambda_i E[S_i] W_Q^i + \frac{\lambda_i E[S_i^2]}{2}$$

in queue in service

$$V_Q^i, V_S^i$$

Now focus on a type 1 customer. *Waiting time* = *amt. of type 1 work in system* + *amt. of type 2 work in service* when this customer arrives, so

$$W_Q^1 = V^1 + V_S^2 = \lambda_1 E[S_1] W_Q^1 + \frac{\lambda_1 E[S_1^2]}{2} + \frac{\lambda_2 E[S_2^2]}{2}$$
Two customer types with priority

\[W_Q^1 = \frac{\lambda_1 E[S_1^2] + \lambda_2 E[S_2^2]}{2(1 - \lambda_1 E[S_1])} \quad \text{if } \lambda_1 E[S_1] < 1 \]

But a type 2 customer has to wait for everyone ahead, plus any type 1 customers who arrive during the type 2 wait, so

\[W_Q^2 = V + \lambda_1 E[S_1]W_Q^2 \Rightarrow W_Q^2 = \frac{\lambda_1 E[S_1^2] + \lambda_2 E[S_2^2]}{2(1 - \lambda_1 E[S_1] - \lambda_2 E[S_2])(1 - \lambda_1 E[S_1])} \]

\[\text{if } \lambda_1 E[S_1] + \lambda_2 E[S_2] < 1 \]
M/M/k Model

k identical machines in parallel, Poisson arrivals (rate λ), exponential service times (rate μ)
CTMC (birth-death) model:
M/M/k Steady-State Probabilities

Level-crossing equations:

\[\lambda P_n = (n + 1) \mu P_{n+1}, n = 0, 1, \ldots, k - 1 \]
\[\lambda P_n = k \mu P_{n+1}, n = k, k + 1, \ldots \]

Define \(\rho = \frac{\lambda}{k \mu} \), solve for \(P_n \) in terms of \(P_0 \)

\[
P_n = \begin{cases}
\frac{(k \rho)^n}{n!} P_0, & n = 0, 1, \ldots, k \\
\frac{k^n \rho^n}{k!} P_0, & n = k + 1, k + 2, \ldots
\end{cases}
\]

Then use the facts that \(\sum_{n=0}^{\infty} P_n = 1 \), \(\sum_{n=0}^{\infty} r^n = (1 - r)^{-1} \) if \(r < 1 \)

to get

\[
P_0 = \left\{ \sum_{n=0}^{k-1} \frac{(k \rho)^n}{n!} + \frac{(k \rho)^k}{(1 - \rho) k!} \right\}^{-1} \quad \text{if } \rho < 1 \quad \rho \text{ is the utilization of each server}
\]
M/M/k Performance Measures

Steady-state expected number of customers in the system

\[L = \sum_{n=0}^{\infty} nP_n = k \rho + \left\{ \frac{(k \rho)^k}{k!} \left(\frac{\rho}{(1-\rho)^2} \right) \right\} P_0, \text{ if } \rho < 1 \]

Mean flow time

\[W = \frac{L}{\lambda} = \frac{1}{\mu} + \left(\frac{1}{k \mu - \lambda} \right) \left(\frac{(k \rho)^k}{k!(1-\rho)} \right) P_0 \text{ by Little's Formula} \]

Expected waiting time

\[W_Q = W - \frac{1}{\mu} \]

Expected number in the queue (\(k \rho \) is expected number of busy servers)

\[L_Q = \lambda W_Q = L - k \rho \]
Erlang Loss System

M/M/k/k system: k servers and a capacity of k: an arrival who finds all servers busy does not enter the system (is lost)

\[P_n = \frac{(k \rho)^n}{n!} P_0, n = 0, 1, \ldots, k \]

\[P_i = \frac{(k \rho)^i}{i!} \left/ \sum_{n=0}^{k} \frac{(k \rho)^n}{n!} \right., i = 0, \ldots, k \]

Above is called Erlang’s loss formula, and it holds for M/G/k/k as well, if \(k \rho = \lambda E[S] \)