Chapter 5 - Linear Transformations

5.1 Introduction

Revise domain, codomain, range, image, pre-image.

Definition. Let \(f : V \rightarrow W \) be a function such that

\[
\begin{align*}
(1) \quad & f(v_1 + v_2) = f(v_1) + f(v_2), \\
(2) \quad & f(cv_1) = cf(v_1)
\end{align*}
\]

Then \(f \) is called a linear transformation from \(V \) to \(W \).

Examples - matrices, polynomials, \(\mathbb{R}^n \rightarrow \mathbb{R}^m \).

Definition. A linear operator is a linear transformation from \(V \) to \(V \).
Examples - matrices, polynomials, $\mathbb{R}^n \rightarrow \mathbb{R}^n$, geometry.

Theorem 1

(1) $L(0) = 0$
(2) $L(-v) = -L(v)$
(3) $L(a_1v_1 + \cdots + a_kv_k) = a_1L(v_1) + \cdots + a_kL(v_k)$

Theorem 2 The composition of two linear transformation is again a linear transformation.

Theorem 3 Let $L: V \rightarrow W$ be a linear transformation. The image of any subspace of V under L is a subspace of W. In particular, the range $L(V)$ is a subspace of W. The pre-image of any subspace of W is a subspace of V. In particular, $L^{-1}(0)$ is a subspace of V called the kernel of L.

Warning - the symbol L^{-1} does not stand for a linear transformation, only $L^{-1}(S)$ makes sense.
Example. Triangular matrices, symmetric matrices. Problem 4.5.11 from homework has the kernel of $p(x) \mapsto p(2)$.
5.2 Matrix of a linear transformation

Theorem 4 Let $B = \{v_1, \ldots v_n\}$ a basis for V and $w_1, \ldots w_n$ be arbitrary vectors in W. Then there exists a unique linear transformation L such that for all $i = 1, \ldots, n$

$$L(v_i) = w_i.$$

Theorem 5 Let V, W be nonzero, finite-dimensional vector spaces. Suppose $B = \{v_1, \ldots v_n\}$ is a basis for V, C is a basis for W. For any linear transformation $L : V \to W$, there exists a unique $m \times n$-matrix A_{BC} such that

$$[L(v)]_C = A_{BC}[v]_B.$$

Furthermore, the i-th column of A_{BC} is $[L(v_i)]_C$.

\[
\begin{array}{ccc}
V & \xrightarrow{L} & W \\
\downarrow{[\cdot]_B} & & \downarrow{[\cdot]_C} \\
\mathbb{R}^n & \xrightarrow{A_{BC}} & \mathbb{R}^m \\
\end{array}
\]
The matrix A_{BC} is called THE matrix of L wrt B, C.

Theorem 6 Let $L : V \to W$ be a linear transformation with matrix A_{BC} wrt bases B, C. Suppose D, E are new bases for V, W, respectively. Let P be the transition matrix from B to D, Q that from C to E. Then

$$A_{DE} = QA_{BC}P^{-1}.$$

Proof.
Definition. Let X, Y be square matrices of the same size. If there exists an invertible matrix P such that

$$Y = PXP^{-1}$$

then we call X similar to Y.

Two matrices X, Y are similar iff they are matrices for the same linear transformation wrt different bases.

Theorem 7 If A and B are similar matrices, then they have the same characteristic polynomial.

Theorem 8 Let B, C, D be bases for U, V, W and $L: V \to W$ and $K: U \to V$ linear transformations with matrices M, N, respectively. Then $L \circ K$ has matrix MN wrt B, D.
Proof.

\[
\begin{array}{ccc}
U & \xrightarrow{K} & V \\
\downarrow & & \downarrow \\
\mathbb{R}^m & \xrightarrow{N} & \mathbb{R}^n \xrightarrow{M} \mathbb{R}^p
\end{array}
\]

\[
\begin{array}{ccc}
\mathbb{R}^m & \xrightarrow{[\cdot]_B} & \mathbb{R}^n & \xrightarrow{[\cdot]_C} & \mathbb{R}^p \\
\downarrow & & \downarrow & & \downarrow \\
\mathbb{R}^m & \xrightarrow{[\cdot]_D} & \mathbb{R}^p
\end{array}
\]
5.3 The Dimension Theorem

Recall kernel, range. Examples from geometry, differentiation.

Theorem 10 (Dimension Theorem) Let $L : V \to W$ be a linear transformation. If $\dim(V)$ is finite then

$$\dim(\text{range}(L)) + \dim(\ker(L)) = \dim(V).$$

Proof - take coordinates!

Corollary 11 If $L : V \to W$ and V is finite-dimensional, then $\dim(\ker(L)) \leq \dim(V)$ and $\dim(\text{range}(L)) \leq \dim(V)$.

Note - $\dim(W)$ can be greater than $\dim(V)$.
Find (basis of) \(\ker(L) \)

1. Find a matrix \(A \) for \(L \).

2. Perform row reduction, obtain \(R \).

3. For each independent variable \(x_i \) in \(Rx = 0 \), find a solution \(v_i \) with this variable = 1, other independents = 0.

4. The vectors \(v_i \) are coordinate vectors of a basis for \(\ker(L) \).
Find (basis of) range(\(L\))

1. Find a matrix \(A\) for \(L\).

2. Perform row reduction, obtain \(R\).

3. The pivot columns are coordinate vectors of a basis for range(\(L\)).

Theorem 12 Let \(L : V \rightarrow W\) with \(V, W\) finite-dimensional. Let \(A\) be a matrix for \(L\) wrt some bases. Then

\[
\begin{align*}
(1) \quad \dim(\text{range}(L)) &= \text{rank}(A), \\
(2) \quad \dim(\ker(L)) &= \dim(V) - \text{rank}(A).
\end{align*}
\]

Corollary 13 For any matrix \(A\),

\[\text{rank}(A) = \text{rank}(A^T).\]
5.4 Isomorphisms

Definition. A function (map, transformation)
$L : V \to W$ is called **one-to-one** (injective) if for all $x_1 \neq x_2 \in V$

$$L(x_1) \neq L(x_2).$$

It is called **onto** (surjective) if $\text{range}(L) = W$.

L is one-to-one iff (contrapositive!)

$$L(x_1) = L(x_2) \Rightarrow x_1 = x_2.$$

Theorem 14 *Suppose $L : V \to W$ is a linear transformation. Then L is one-to-one iff $\ker(L) = \{0\}$.***

Definition. A linear transformation $L : V \to W$ is called **invertible** iff there exists another transformation $K : W \to V$ such that $L \circ K = I_W$ and $K \circ L = I_V$.
Theorem 15 If $L : V \rightarrow W$ is an invertible linear transformation, then the transformation K above is unique, and it is also a linear transformation. It is denoted by L^{-1}.

Theorem 16 If V, W are finite-dimensional then $L : V \rightarrow W$ is invertible iff the matrix for L wrt any bases for V, W is invertible.

Definition. A linear transformation $L : V \rightarrow W$ is called an isomorphism if it is both one-to-one and onto. Two vector spaces are called isomorphic if there exists an isomorphism between them.

Theorem 17 L is an isomorphism iff L is invertible.

Theorem 18 Suppose V, W are finite-dimensional. L is an isomorphism iff $\dim V = \dim W$ and either $\ker(L) = \{0\}$ or $\text{range}(L) = W$.
Theorem 19 Two finite-dimensional vector spaces are isomorphic iff they have the same dimension.
5.5 Diagonalization

L is always a linear operator $V \to V$.

Definition. We call v an **eigenvector of** L corresponding to λ if $v \neq 0$ and $L(v) = \lambda v$. We call λ an **eigenvalue of** L if there exists an eigenvector corresponding to λ.

For V finite-dimensional, eigenvalues of L are exactly the eigenvalues of any matrix of L.

Eigenvectors of L have B-coordinates which are eigenvectors of A_{BB}.

Definition. For any eigenvalue λ of L, define the **eigenspace of** λ, written Eig_λ, to be all vectors v such that $L(v) = \lambda v$.

Example. $L(A) = A + A^T$.
Definition. Let A any matrix for L. Define the characteristic polynomial of L to be that of A,

$$p_L(x) = p_A(x).$$

Definition. L is called diagonalizable iff any matrix A for L is diagonalizable. Equivalently, some matrix for L is diagonal.

Theorem 20 L is diagonalizable iff V has a basis consisting of eigenvectors of L.

Theorem 21 Suppose $\lambda_1, \ldots, \lambda_t$ are distinct eigenvalues of L, and v_i is an eigenvector corresponding to λ_i for $i = 1, \ldots, t$. Then v_1, \ldots, v_t are linearly independent.

Proof - induction over $k = 1, \ldots, t$.

Example. Consider L given by

$$A = \begin{bmatrix}
31 & -14 & -92 \\
-50 & 28 & 158 \\
18 & -9 & -55
\end{bmatrix}.$$

Here, $p_A(x) = (x + 1)(x - 2)(x - 3)$. Eigenvectors are eg $[2, -2, 1], [10, 1, 3], [1, 2, 0]$.

Corollary 22 If L has $\text{dim}(V)$ distinct linear eigenvalues, then L is diagonalizable.

Theorem 23 Suppose $\lambda_1, \ldots, \lambda_t$ are distinct eigenvalues of L and $B_1, \ldots B_t$ are bases for the respective eigenspaces. Then the B_i are pairwise disjoint, and their union is linearly independent.

Proof. Suppose the list of all vectors in $B_1, \ldots B_t$ is linearly dependent (this includes possible overlaps). Suppose k is chosen such that $T = \{v_1, \ldots v_{k-1}\}$ is linearly dependent but $T \cup \{v_k\}$
is not. So there is a linear combination of T giving v_k,

$$\sum_{i=1}^{k-1} a_i v_i = v_k. \quad (7)$$

Apply L to this equation which gives

$$\sum_{i=1}^{k-1} a_i \lambda_i v_i = \lambda_k v_k. \quad (8)$$

Multiply Equation (7) by λ_k and subtract from (8).

$$\sum_{i=1}^{k-1} a_i (\lambda_i - \lambda_k) v_i = 0 \quad (9)$$

Now every coefficient here must be zero. So either $\lambda_i = \lambda_k$ or $a_i = 0$. When $\lambda_i = \lambda_k$, v_k belongs to the same basis of E_{λ_k} as all these v_i, so it is linearly independent from these too. Looking again at (7), these coefficients a_i are zero as well.
Example. Consider

\[
A = \begin{bmatrix}
-4 & 7 & 1 & 4 \\
6 & -16 & -3 & -9 \\
12 & -27 & -4 & -15 \\
-18 & 43 & 7 & 24
\end{bmatrix}.
\]

Eigenvalues are $-1, 2, 0$. The eigenvalue 1 has an eigenspace of dimension 2.

Definition. The dimension $\dim(\text{Eig}_\lambda)$ is called the geometric multiplicity of λ, written g_λ. The exponent of $x - \lambda$ in the characteristic polynomial p_L is called the algebraic multiplicity of λ, written a_λ.

Theorem 24 For all eigenvalues λ of L,

\[
1 \leq g_\lambda \leq a_\lambda.
\]