Problem 1 a) Find the general solution of
\[x'' - 2x' + 10x = 0 \]
b) Find a particular solution of
\[x'' - 2x' + 10x = 50 + e^t. \] \hspace{1cm} (1)
c) What is the general solution of Equation (1)? \hspace{1cm} (5+5+5=15 points)

Solution. a) We look at the auxiliary equation
\[r^2 - 2r + 10 = 0 \]
which has solutions \(r = 1 \pm 3i \), corresponding to the general solution
\[x_c(t) = e^t(c_1 \cos 3t + c_2 \sin 3t). \]
b) There is no overlap of terms in \(x_c \) with terms 50 and \(e^t \) on the right-hand side, so we try
\[x_p = A + Be^t. \]
We substitute \(x'_p \) and \(x''_p \) into the original equation, getting
\[Be^t - 2Be^t + 10(A + Be^t) = 50 + e^t. \]
This means \(10A = 50 \) and \(9B = 1 \), so we put \(A = 5 \) and \(B = \frac{1}{9} \), and get the particular solution
\[x_p(t) = 5 + \frac{e^t}{9}. \]
c) We just add up,
\[x(t) = x_c(t) + x_p(t) = e^t(c_1 \cos 3t + c_2 \sin 3t) + 5 + \frac{e^t}{9}. \]
Problem 2 Set up a trial solution for (do NOT solve) (10 points)

\[y'' + 8y' + 15y = 4te^{-5t} + \cos(3t). \]

Solution. We do need to check the auxiliary equation

\[r^2 + 8r + 15 = (r + 3)(r + 5) = 0 \]

so \(r = -3 \) and \(r = -5 \) are roots, and the complementary function is

\[y_c = c_1e^{-3t} + c_2e^{-5t}. \]

We notice the overlap with \(e^{-5t} \) on the right, so we need to have an extra factor of \(t \) for that, putting

\[y_p(t) = t(A + Bt)e^{-5t} + C\cos 3t + D\sin 3t. \]

Problem 3 A cart of mass 9 kg is connected to the wall by a spring with stiffness \(k = 36 \) N/m. It moves horizontally without friction.

a) Let the displacement of the cart from rest position be \(x(t) \). Determine the equation of motion for \(x(t) \).

b) Given that \(x(0) = 5 \) and \(x'(0) = 0 \), find \(x(t) \) for arbitrary time \(t \). (5+5 = 10 points)

Solution. a) The equation is simply

\[9x'' + 36x = 0. \]

b) The auxiliary equation

\[9r^2 + 36 = 0 \]

has roots \(r = \pm 2i \), so a general solution is

\[x(t) = c_1 \cos 2t + c_2 \sin 2t. \]

The initial conditions tell us \(c_1 = 5 \) and \(c_2 = 0 \).

Problem 4 Find the general solution of (10 points)

\[t^2x'' - 5tx' + 8x = 0. \]
Solution. This is a Cauchy-Euler equation. We form the characteristic equation
\[r(r - 1) - 5r + 8 = 0 \]
which has roots \(r = 2 \) and \(r = 4 \), leading to solutions \(t^2 \) and \(t^4 \). The general solution is then
\[x(t) = c_1 t^2 + c_2 t^4. \]

Problem 5 A shell of mass 2 kg is shot upward with an initial velocity of 120 m/s, then allowed to fall under the influence of gravity. Assume that the force of air resistance is \(-8v\), where \(v \) is the velocity of the shell. If the shell is 100 m above the ground at time \(t = 0 \), determine when it will hit the ground, assuming that the exponential term has died off. Use the value \(g = 10 \) N/kg for the magnitude of the acceleration due to gravity. (15 points)

Solution. You can think of Newton’s Second Law, \(ma = F \) with the total force being gravity + friction. But in standard form, you will want to rewrite this as
\[2v' + 8v = -2g, \quad \text{or} \quad v' + 4v = -10. \]
So the integrating factor is \(e^{4t} \), and
\[e^{4t}v = -10 \int e^{4t} dt = -\frac{5}{2} e^{12t} + C, \]
which we solve for \(v \),
\[v = -\frac{5}{2} + Ce^{-4t}. \]
From \(v(0) = 120 \), we get
\[C = 120 + \frac{5}{2} = \frac{245}{2}. \]
Then the position is (note that we have to use a new variable instead of \(t \), because \(t \) is already in use as the upper limit of the integral)
\[x(t) = \int_0^t -\frac{5}{2} + \frac{245 e^{-4s}}{2} \, ds = -\frac{5}{2} t - \frac{245(e^{-4t} - 1)}{8} + D. \]
From \(x(0) = 100 \), we determine \(D = 100 \). The exponential becomes negligible very soon, and if we neglect it, we can solve
\[0 = x(t) \approx -\frac{5}{2} t + \frac{245}{8} + 100 \]
which gives the time when the shell hits the ground as

\[t = \frac{209}{4} = 52.25 \]

(in seconds).