Math 267 - Exam 1A - solutions

Problem 1 Have a look at the whole exam paper. Which of the numbered differential equations is/are linear? (just list their numbers).
Solution. Only (4), (5).

Problem 2 For which of the following initial value problems does Theorem 1.2.1 (section 1.2 of Chapter 1) guarantee existence and uniqueness of a solution, at least in a small rectangle? Justify your answers briefly.

\[
\begin{align*}
y' &= \frac{x^2 - 4}{y - 1} & y(2) &= 1 \\
y' &= \frac{x^2 - 4}{y - 1} & y(2) &= 0 \\
y' &= 8 - \sqrt{y} & y(5) &= 0 \\
y' &= \frac{x^2 - y}{x - 1} & y(2) &= 4
\end{align*}
\]

Solution. Theorem 1 applies to (2) and (4) only. Checks for (1): \(f(x, y) = \frac{x^2 - 4}{y - 1} \) is not defined for \(y = 1 \). So it can’t even have a partial derivative there.
Checks for (2): \(f(x, y) = \frac{x^2 - 4}{y - 1} \) is defined and differentiable near \((2, 0)\), so continuous. The same is true for \(\partial f/\partial y \).
Checks for (3): \(f(x, y) = 8 - \sqrt{y} \) is continuous everywhere. But the derivative \(\partial f/\partial y = -y^{-1/2}/3 \) is not defined for \(y = 0 \), so not continuous. Theorem 1.2.1 does not apply.
Checks for (4): \(f(x, y) = \frac{x^2 - y}{x - 1} \) is continuous near \(x = 2, y = 4 \). The same is true for the partial derivative \(\partial f/\partial y = -1/(x - 1) \).

Problem 3 Consider the differential equation

\[xy' + 3y = 4x + \frac{\cos x}{x^2} \]

a) Find the general solution. Write down intermediate steps explaining the method you are using - the result alone is not enough.
b) Solve the initial value problem consisting of Equation (5) and \(y(\pi) = 5 \).
c) What can you say about existence and uniqueness of the solution of the initial value problem (IVP) involving (5) and the condition \(y(\pi) = 5 \)? What is the biggest interval where you can be sure that solutions of such an IVP are defined?

Solution.
a) This equation is linear. But to apply the recipe, you have to divide by \(x \) first (\(y' \) has to be isolated)! You get

\[
y' + \frac{3y}{x} = 4 + \frac{\cos x}{x^3}.
\]

Then the recipe tells us to put

\[
\mu(x) := e^{\int \frac{3}{x} \, dx} = |x|^3,
\]

to multiply equation (6) by \(\mu(x) \) and then integrate. We write \(\text{sgn}(x) = -1 \) or 1, depending on whether \(x < 0 \) or \(x > 0 \), and integrate

\[
|x|^3 y = \text{sgn}(x) \int 4x^3 + \cos x \, dx = \text{sgn}(x)(x^4 + \sin(x)) + C.
\]

Solve for \(y \) – the sign \(\text{sgn}(x) \) cancels out, and we get

\[
y(x) = x + \frac{\sin(x) + C}{x^3}.
\]

Alternatively, we could say that for this initial value problem, always \(x > 0 \) since we are supposed to look near \(x = \pi \).

b) Substitute \(x = \pi \), \(y = 5 \) into equation (8) to get \(5 = \pi + C/\pi^3 \), so \(C = 5\pi^3 - \pi^4 \) and

\[
y(x) = x + \frac{\sin(x) + 5\pi^3 - \pi^4}{x^3}
\]

c) The existence / uniqueness of this solution is guaranteed for all \(x > 0 \) and all \(x < 0 \) because of the existence/uniqueness theorem for linear equations.

Problem 4 Consider the differential equation

\[
(2xy + 5)dx + (x^2 - 3y^2)dy = 0.
\]

a) Show that this equation is exact by performing the test for exactness.

b) Find an implicit solution of equation (9).

Solution.
a) Define \(M(x,y) := 2xy + 5 \) and \(N(x,y) := x^2 - 3y^2 \). Then

\[
M_y = 2x = N_x
\]
so the equation is exact.

b) Put $F(x, y) := \int M \, dx = x^2y + 5x + C(y)$. Compare F_y to N:

\[
F_y = x^2 + C'(y) \\
N = x^2 - 3y^2
\]

So $C'(y) = -3y^2$, and $g(y) = -y^3 + D$. The implicit solution is $F(x, y) = C$ where

\[
F(x, y) = x^2y + 5x - y^3 + D.
\]

Problem 5 Consider the differential equations

\[
a) \ y' = \frac{x + y + 2}{y + 2} \quad (11) \\
b) \ y' + 2xy = 6xy^5 \quad (12) \\
c) \ x^3y' = 2xy^2 + y^3 \quad (13)
\]

Give substitutions $v = v(x, y)$ for each of them transforming them into separable or linear equations. Write down the definition of v and the resulting differential equation for v which is separable/linear - do NOT solve them.

Solution.

a) Here, we need to apply a shift by a constant, $u = y + 2$ to make the equation homogeneous,

\[
u' = u' = \frac{x + u}{u}
\]

and then the recipe for homogeneous equations, suggesting $v = u/x = (y + 2)/x$ so

\[
u' = \frac{1 + v}{v} \\
v' = \frac{u' - v}{x} = \frac{1 + v}{x} - \frac{v}{x}
\]

which is separable. Stop right there!

b) This equation is already separable! you could say $v = y$, and

\[
y' = 2x(3y^5 - y), \quad \frac{1}{3y^5 - y} \, dy = \frac{1}{2x} \, dx.
\]
Alternatively, you can use that it is a Bernoulli equation with \(n = 5 \), so use \(v = y^{-4} \). You get

\[
\frac{dv}{dx} = -4y^{-5}(6xy^5 - 2xy) = -24x + 8xv
\]

which is linear. Stop!

c) This is a homogeneous equation, so use \(v = y/x \). Then

\[
y' = 2v^2 + v^3
\]

and consequently,

\[
\frac{dv}{dx} = \frac{y' - v}{x} = \frac{2v^2 + v^3 - v}{x}
\]

which is separable - stop.