Math 151 - Exam 1A - solutions

Problem 1 [10 pts] Solve for x: $4^{x+3} = \frac{1}{16}$.
Solution Take logarithms with base 4 to get $x + 3 = -2$, so $x = -5$.

Problem 2 [10 pts] Suppose $\log_b(Y) = 4$ and $\log_b(Z) = -5$. Use properties of logarithms to find the value of
$$\log_b(\sqrt[3]{YZ}).$$
Solution
$$\log_b(\sqrt[3]{YZ}) = \frac{1}{3} \log_b(YZ) = \frac{1}{3}(\log_b Y + \log_b Z) = -\frac{1}{3}.$$

Problem 3 [12 pts] Find all solutions: $\log_2(t^2 - 2t) = 3$.
Solution Take exponentials with base 2 to get $t^2 - 2t = 2^3 = 8$, so $t^2 - 2t - 8 = 0$. This gives the solutions $t = -2, t = 4$.

Problem 4 [10 pts] Find the interest earned on $60,000 invested for 5 years at 4.8% interest, compounded quarterly. Round to the nearest cent.
Solution The whole amount you have in the bank is
$$60,000 \cdot 1.012^{20} \approx 76166.06.$$ For the interest earned, subtract the capital. So the answer is
$$76166.06 - 60,000 = 16166.06.$$

Problem 5 [15 pts] Consider the function $f(x) = 3x^2 - 2x + 4$.
a) Find the average rate of change $f_{2,4}$ for f between 2 and 4.
b) Write $f_{2,b}$ for the average rate of change for f between 2 and b. Find $\lim_{b \to 2} f_{2,b}$.
Solution a) We use $f(2) = 12$ and $f(4) = 44$. So
$$f_{2,4} = \frac{44 - 12}{4 - 2} = 16.$$
b) First,

\[f_{2,b} = \frac{f(b) - f(2)}{b - 2} = \frac{3b^2 - 2b - 8}{b - 2}. \]

Factor the numerator, cancel out \(b - 2 \), and you get that the instantaneous rate of change is

\[\lim_{b \to 2} \frac{3b^2 - 2b - 8}{b - 2} = \lim_{b \to 2} \frac{3b + 4}{1} = 10. \]

Problem 6 [10 pts] Find \(\lim_{z \to \infty} \frac{5z^2 + 2z - 1}{3z + 1} \).

Solution The degree of the numerator (= 2) is higher than that of the denominator (= 1), so the limit is \(\infty \). Alternatively,

\[\lim_{z \to \infty} \frac{5z^2 + 2z - 1}{3z + 1} = \lim_{z \to \infty} \frac{5z + 2 - 1/z}{3 + 1/z} = \lim_{z \to \infty} \frac{5z}{3} = \infty. \]

Problem 7 [8 pts] Let \(f(x) = \begin{cases}
3x - 5 & \text{if } x < 2 \\
2x & \text{if } 2 \leq x < 6 \\
18 - x & \text{if } 6 \leq x
\end{cases} \)

Find the following limits. Write DNE for a limit that does not exist.

a) \(\lim_{x \to 2^-} f(x) = 1 \)
b) \(\lim_{x \to 2^+} f(x) = 4 \)

c) \(\lim_{x \to 2^2} f(x) = \text{DNE} \)

d) Find all points \(x \) where \(f(x) \) is not continuous.

Solution Plotting this function may help to see what is going on, see above.

d) \(f(x) \) is continuous at all points \(x \) except at \(x = 2 \). Note that for \(x = 6 \), both one-sided limits agree with \(f(6) = 12 \), so \(f(x) \) is continuous there. All other \(x \)-values besides 2 and 6 are using only one (polynomial) formula for \(f(x) \), so \(f(x) \) is continuous there.

Problem 8 [15 pts] Blood alcohol content \(A(t) \) can be modeled with an exponential law,

\[
A(t) = Ce^{kt}.
\]

Suppose \(A(0) = 10 \) (in mg/L) at time \(t = 0 \) hours. Two hours after \(t = 0 \), \(A(t) \) has decreased to 6 mg/L.

a) Find the values of the constants \(C \) and \(k \). Give exact answers (no decimal fractions).

b) When will the blood alcohol content be 2 mg/L if \(A(t) \) continues to follow this law? Round your answer to one digit after the decimal point.

Solution a) We get \(C = 10 \) from \(t = 0 \). Now substitute \(t = 2 \) and \(A(2) = 6 \). Solve this for \(k \) by taking logarithms to get

\[
k = \frac{\ln(6/10)}{2} = \frac{\ln 0.6}{2}.
\]

b) We need to use the values for \(C \) and \(k \) from part a) and solve \(A(t) = 2 \) for \(t \). This gives

\[
2 = 10e^{kt}
\]

so after dividing by 10, we take logarithms to get \(\ln 0.2 = kt \). Divide by \(k \) to get

\[
t = \frac{\ln 0.2}{k} = \frac{2 \ln 0.2}{\ln 0.6} \approx 6.3
\]

(in hours).

Problem 9 [10 pts] Consider the function

\[
P(t) = 4^t.
\]

Approximate the instantaneous rate of change of \(P(t) \) at \(t = 2 \). Round the answer to four digits after the decimal point.
Solution Here is a table of values of average rates of change $P_{2,t}$

<table>
<thead>
<tr>
<th>t</th>
<th>$P_{2,t}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.999</td>
<td>22.16534238353703</td>
</tr>
<tr>
<td>1.9999</td>
<td>22.179172399307937</td>
</tr>
<tr>
<td>1.99999</td>
<td>22.18055603678652</td>
</tr>
<tr>
<td>1.999999</td>
<td>22.18069440314673</td>
</tr>
<tr>
<td>2.000001</td>
<td>22.180725153119994</td>
</tr>
<tr>
<td>2.0001</td>
<td>22.1808635236313</td>
</tr>
<tr>
<td>2.001</td>
<td>22.182247298603926</td>
</tr>
<tr>
<td>2.01</td>
<td>22.196091381352147</td>
</tr>
</tbody>
</table>

The t-values closest to 2 give the best estimate of the limit of the average rates of change, so we estimate

$$P'(2) \approx 22.1807.$$

The other values of t tell us that this is not affected by roundoff errors too much.