Lec. 32: 4-3-09

1. Analogy

2. River mixing examples

<table>
<thead>
<tr>
<th>Problem</th>
<th>Governing Eqn</th>
<th>Solution</th>
<th>Transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulse at unit plate</td>
<td>[\frac{2u}{\partial t} = v \frac{\partial^2 u}{\partial y^2}]</td>
<td>[u = \text{erfc} \left(\frac{y}{2 \sqrt{D \tau}} \right)]</td>
<td>Momentum diffusing by viscous stresses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Constitutive relation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[C = \frac{u}{2} \frac{\partial C}{\partial y}]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[C \text{ = mass flux} = \frac{u}{2} \frac{\partial C}{\partial y}]</td>
</tr>
<tr>
<td>Maintained pollution in</td>
<td>[\frac{2C}{\partial t} = 0 \frac{\partial C}{\partial x}]</td>
<td>[C = \text{erfc} \left(\frac{x}{2 \sqrt{D \tau}} \right)]</td>
<td>Contaminant diffusing by molecular diffusion</td>
</tr>
<tr>
<td>river</td>
<td></td>
<td></td>
<td>Flow = (-D \frac{\partial C}{\partial x}) Fick's law</td>
</tr>
</tbody>
</table>

Unsteady flow to a well

\[\frac{\partial s}{\partial t} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial s}{\partial r} \right) = \frac{1}{1 - \left(\frac{r}{R} \right)^2} \]

\[s = \text{drawdown} \]
\[r = \text{radial distance} \]
\[t = \text{time} \]

\[s = \frac{Q_0}{4\pi T} W(u) \]

\[W(u) = \text{well function} \]

\[u = \frac{Q_0}{4\pi T} \left(\frac{r}{2 \sqrt{D \tau}} \right) \]

\[q = -\frac{\partial C}{\partial r} \]

Darcey's law

\[\text{hydraulic conductivity} \]
River mixing

Instantaneous, dumping - spill
dye study

Contaminant mixed across river

Top view

First consider negligible velocity (i.e. tank)

- Peak remains at x=0
- Cloud spreads
- Peak concentration decreases log cons. of mass
- Damping

Cloud width δ ~ \sqrt{t}

Solution: \[C = \frac{M}{A \sqrt{4\pi t}} \exp\left(\frac{-x^2}{4t}\right) \]

Gaussian

Add flow or mean velocity \(U \)
Just move with the flow:

\[x \rightarrow x-Ut \]

\[C = \frac{M}{A \sqrt{4\pi t}} \exp\left(\frac{-(x-Ut)^2}{4t}\right) \]