34. Some groups miscalculated the drawdown, but it was difficult to pinpoint the errors. To check your calculations, I will mention that I compute a drawdown of 2.87 m at a time of 10,000 seconds in part a and a drawdown of 3.19 m at a distance of 300 m in part b.

35. The simplest approach is to use the spreadsheet from lecture (which is on the website). The textbook describes a graphical method, but the spreadsheet should give a more precise answer. I compute a storativity of 9×10^{-4} and a transmissivity of $1.04 \times 10^{-2} \text{ m}^2/\text{s}$.

36. Because the drawdown occurs in stages for unsteady flow to an unconfined aquifer, plotting drawdown helps to determine whether the drawdown is in the early or late stage. Part a is in the early stage, while part b is in the late stage. I find a drawdown of 0.11 m for part a and a time of 1.8 hours for part b. Also, if the values are between values listed in the table, use linear interpolation to find the value you want.

37. I was looking for explanations that accounted for physical processes and mechanisms. The parameter Γ can increase for several reasons, but one is that the vertical conductivity can increase. In that case, the contribution of vertical flow to the total flow to the well is larger, and the drawdown will be less. As $\Gamma \to 0$, the behavior is dominated by the early stage, in which the aquifer behaves as a confined aquifer.