Problems from Math 519/520 (M. Smiley)

Textbook references are to Green’s Functions and Boundary Value Problems, 2nd ed, by I. Stakgold

1. Let \(p, q, f \in C(\alpha, \beta) \) and \(x_0 \in (\alpha, \beta) \). Suppose that \(y_1(x) \) and \(y_2(x) \) are the solutions of the 2nd order linear homogeneous equation \(y'' + p(x)y' + q(x)y = 0 \), on the interval \((\alpha, \beta)\), that satisfy
\[
y_1(x_0) = 1, \quad y_1'(x_0) = 0 \quad \text{and} \quad y_2(x_0) = 0, \quad y_2'(x_0) = 1.
\]
This choice of initial conditions insures that \(y_1(x) \) and \(y_2(x) \) are linearly independent on \((\alpha, \beta)\). Using variation of parameters one finds that
\[
Y(x) = \int_{x_0}^{x} k(x, s)f(s) \, ds, \quad \text{where} \quad k(x, s) = \frac{y_1(s)y_2(x) - y_1(x)y_2(s)}{y_1(s)y_2'(s) - y_1'(s)y_2(s)},
\]
is a solution of the nonhomogeneous problem
\[
y'' + p(x)y' + q(x)y = f(x) \tag{1}
\]
on the interval \((\alpha, \beta)\). Find the solution of the nonhomogeneous problem (1) that satisfies \(y(x_0) = a, \ y'(x_0) = b \).

2. The solution of
\[
y'' + y = f(x), \quad 0 < x < \frac{\pi}{2}, \quad y(0) = 0, \ y\left(\frac{\pi}{2}\right) = 0,
\]
can be written in the form
\[
y(x) = \int_{0}^{\frac{\pi}{2}} k(x, s)f(s) \, ds,
\]
where \(k(x, s) \) is defined on the square \(0 \leq x, s \leq \frac{\pi}{2} \). Determine \(k(x, s) \).

3. Boundary value problems may have zero, one, or an infinite number of solutions. To which category does each of the following boundary value problems belong?
\[
y'' + y = 0, \quad 0 < x < \pi, \quad y(0) = 0, \ y(\pi) = 0,
\]
\[
y'' + y = 1, \quad 0 < x < \frac{\pi}{2}, \quad y(0) = 0, \ y\left(\frac{\pi}{2}\right) = 0,
\]
\[
y'' + y = 0, \quad 0 < x < \pi, \quad y(0) = 0, \ y(\pi) = 1,
\]

4. Show that \(\{\sin\left(\frac{nx\pi}{a}\right)\}_{n=1}^{\infty} \) is an orthogonal set of functions on the interval \((0, a)\). That is, show
\[
\int_{0}^{a} \sin\left(\frac{nx\pi}{a}\right) \sin\left(\frac{mx\pi}{a}\right) \, dx = \begin{cases} 0, & m \neq n \\ \frac{a}{2}, & m = n \end{cases}.
\]
5. Let \(w(t, x) = \sum_{n=1}^{\infty} b_n \exp(-\left(\frac{n\pi}{a}\right)^2 kt) \sin\left(\frac{n\pi x}{a}\right) \), where \(\{b_n\}_{n=1}^{\infty} \) is a bounded sequence of numbers.
 a) Show that \(w(t, x) \) is a continuous function on \((t_0, \infty) \times (0, a)\) for any \(t_0 > 0 \).
 b) Show that the series corresponding to \(w_t \) and \(w_{xx} \) are uniformly convergent on \((t_0, \infty) \times (0, a)\) for any \(t_0 > 0 \).
 c) Show that \(w(t, x) \to 0 \), uniformly on \((0, a)\) as \(t \to \infty \). Hint: Use comparison to a geometric series with ratio \(r = \exp(-\pi^2 kt/a^2) \).

6. Let \(y \in C[0, \pi] \cap C^1(0, \pi) \) be a function satisfying i) \(y(0) = y(\pi) = 0 \) and ii) \(|y'(x)| \) is bounded on \((0, \pi)\).
 a) Use L'Hôpital's rule to show that
 \[
 \lim_{x \to 0^+} \frac{[y(x)]^2}{x} = 0, \quad \lim_{x \to \pi^-} \frac{[y(x)]^2}{x - \pi} = 0.
 \]
 b) Let \(z(x) = [y(x)]^2 \cot x, 0 < x < \pi \). Show that
 \[
 z' = (y')^2 - y^2 - (y' - y \cot x)^2
 \]
 and that \(z(x) \to 0 \) as either \(x \to 0^+ \) or \(x \to \pi^- \). Conclude that
 \[
 \int_0^\pi [y(x)]^2 \, dx \leq \int_0^\pi [y'(x)]^2 \, dx.
 \]
 When can equality hold?
 c) Let \(w \in C[0, a] \cap C^1(0, a) \) be a function satisfying i) \(w(0) = w(a) = 0 \) and ii) \(|w'(x)| \) is bounded on \((0, a)\). Use the result above to show
 \[
 \left(\frac{\pi}{a}\right)^2 \int_0^a [w(x)]^2 \, dx \leq \int_0^a [w'(x)]^2 \, dx.
 \]
 The technique used in this exercise is given in the book *Inequalities* by Hardy, Littlewood and Pólya.

7. a) Give an example of a function \(\phi(x) \) that satisfies i) \(\phi \in C^1(-\infty, +\infty) \), ii) \(0 < \phi(x) \leq 1 \) on \(|x| < 1\), and iii) \(\phi(x) = 0 \) on \(|x| > 1\).
 b) Let \(x_0, \epsilon \in \mathcal{R} \) with \(\epsilon > 0 \). Give an example of a function \(\psi(x) \) that satisfies i) \(\psi \in C^1(-\infty, +\infty) \), ii) \(0 < \psi(x) \leq 1 \) on \(|x - x_0| < \epsilon\), and iii) \(\psi(x) = 0 \) on \(|x - x_0| > \epsilon\).

8. Suppose that \(h \in C[0, 1] \) and \(< h, \phi' >= 0 \) for every \(\phi \in C^1[0, 1] \) satisfying \(\phi(0) = \phi(1) = 0 \). Show that \(h \) is a constant function without assuming a priori that \(h \) is differentiable. (See problem 5.2 on page 39 for a hint.)

9. Let \(f_n(x) = n^\alpha x e^{-n|x|} \) and \(1 \leq p < \infty \). Show that the sequence \(\{f_n\}_{n=1}^{\infty} \) converges to the zero function in \(L^p(0, 1) \) for all \(\alpha \in \left[0, 1 + \frac{1}{p}\right] \). Hint: The Gamma function \(\Gamma(x) \) is defined for all \(x > 0 \) by
 \[
 \Gamma(x) = \int_0^\infty e^{-t} t^{x-1} \, dt.
 \]

10. Let \(f(x) \) be piecewise continuous on \((0, 1)\), and let \(u(x) \) be the solution of:
 \(-u'' = f \) on \((0, 1)\), \(u(0) = u(1) = 0 \). Use the Schwartz inequality to show that
\[\|u\|_2 \leq I(g)\|f\|_2, \] where \(I(g) \) denotes a double integral involving the Green's function for the problem. State and evaluate the double integral.

11. Let \(0 < \xi < s \) be given real numbers. Find the (distribution) solution of the boundary value problem
\[
-\frac{d^2g}{dx^2} = \delta(x - \xi), \quad 0 < x < s, \quad g(0) = g(s) = 0
\]
by first finding a general (distribution) solution of the differential equation.

12. Provide a solution to problem 4.4 on page 95. Hint: Use the Green’s function determined in the previous problem.

13. Let \(\phi(x) \) be defined by \(\phi(x) = 0 \) for \(|x| \geq 1 \) and \(\phi(x) = \exp(\psi(x)) \) for \(|x| < 1 \), where \(\psi(x) = 1/(x^2 - 1) \). Show that \(\phi \in C^\\infty(\mathbb{R}) \). Hint: Use induction to show that, for all integers \(m \geq 0 \), \(\phi^{(m)}(x) = p_m(x)[\psi(x)]^m\phi(x) \) for \(|x| < 1 \), where \(p_m \) is a polynomial.

14. Show that \(g(x) = e^{-|x|/4\pi|x|} \) satisfies \(-\Delta g + q^2 g = \delta(x) \) in the sense of distributions on \(\mathbb{R}^3 \).

15. Let \(a > 0 \) be a fixed number and \(f(x) = (4\pi)^{-\frac{3}{2}} \exp(-|x|^2/4), \quad x \in \mathbb{R}^3 \). Show that the family of functions \(\{f_\epsilon(x)\}_{\epsilon > 0} \) defined by \(f_\epsilon(x) = (ae)^{-\frac{3}{2}} f(x/\sqrt{a\epsilon}) \) is a delta family as \(\epsilon \to 0^+ \). Hint: Use Theorem 3, page 123.

16. i) Find the solution of the wave equation for the semi-infinite string
\[
 Du - c^2 u_{xx} = 0, \quad 0 < t, x < \infty,
\]
\[
u(0, x) = f(x), \quad u_t(0, x) = g(x), \quad 0 < x < \infty,
\]
\[
u(t, 0) = h(t), \quad 0 < t < \infty.
\]
ii) Plot the solution \(u(t, x) \) as a function of \(x \) at times \(t = 2 \) and \(t = 5 \) when the data for the problem is \(f(x) = \max\{0, 1 - |x - 3|\} \), \(g(x) = 0 \) for \(x > 0 \), \(h(t) = 0 \) for \(t > 0 \), and \(c = 1 \).

iii) Plot the solution \(u(t, x) \) as a function of \(x \) at times \(t = 1 \) and \(t = 5 \) when the data for the problem is \(f(x) = 0 \), \(g(x) = 0 \) for \(x > 0 \), \(h(t) = \sin(\pi t/2) \) for \(t > 0 \), and \(c = 1 \).

17. i) If \(f, g \in C^m(\mathbb{R}) \) then
\[
 \int f^{(m)}(x)g(x) \, dx = \sum_{i=1}^{m} (-1)^{i-1} f^{(m-i)}(x)g^{(i-1)}(x) + (-1)^m \int f(x)g^{(m)}(x) \, dx.
\]
Use induction to verify this statement.

ii) Let \(L = \sum_{m=0}^{p} a_m(x)D^m \) be a linear variable coefficient ordinary differential operator on the real line. Verify the Lagrange identity
\[
v Lu - u L^* v = \frac{d}{dx} \sum_{m=1}^{p} \sum_{i=1}^{m} (-1)^{i-1} D^{i-1}(a_m v)D^{m-i} u,
\]
for functions \(u, v \in C^p(\mathbb{R}) \).

18. Let \(a > 0 \) be a fixed number and \(K(t, x) = (4\pi at)^{-\frac{3}{2}} \exp(-|x|^2/4at), (t, x) \in \mathbb{R} \times \mathbb{R}^3 \). Show that \(E(t, x) = H(t)K(t, x) \) is a causal fundamental solution for the diffusion operator \(L = \partial_t - a\Delta \), with pole at \((t, x) = (0, 0) \); thus \(LE(t, x) = \delta(t, x) \) and \(E(t, x) = 0 \) for \((t, x) \in (-\infty, 0) \times \mathbb{R}^3 \). The causal fundamental solution \(E(t, x) \), with pole at \((t, x) = (0, 0) \), for the time-dependent diffusion equation in an absorbing medium satisfies

\[
\frac{\partial E}{\partial t} - \frac{\partial^2 E}{\partial x^2} + q^2 E = \delta(t, x),
\]

with \(E(t, x) = 0 \) for \((t, x) \in (-\infty, 0) \times \mathbb{R} \). Find \(E(t, x) \) by changing dependent variables \(E = \exp(-q^2t)F \), keeping in mind that both \(E \) and \(F \) are distributions.

20. Show that \(U(t, x) = \frac{1}{4}H(t - |x|) \) is a causal fundamental solution for the 1-dimensional wave operator \(\partial^2_{tt} - \partial^2_{xx} \) with pole at \((t, x) = (0, 0) \). Hint: See Example 7 on page 190.

21. Find the causal fundamental solution for the ordinary differential operator \(L = \frac{d^2}{dx^2} + 1 \) with pole at \(x = \xi \).

22. Let \(L = a_2(x) \frac{d^2}{dx^2} + a_1(x) \frac{d}{dx} + a_0(x) \), where \(a_0, a_1, a_2 \in C^2[a, b] \), and define the boundary value operators \(B_iu = \alpha_i u(a) + \alpha_i' u'(a) + \beta_i u(b) + \beta_i' u'(b) \), for \(i = 1, 2 \).

i) Show that \(M = \{ u \in C^1[a, b] : B_1u = B_2u = 0 \} \) is a closed linear subspace of the Banach space \(C^1[a, b] \). The norm is the standard one:

\[
||u||_{C^1[a, b]} = \max_{x \in [a, b]} |u(x)| + \max_{x \in [a, b]} |u'(x)|.
\]

ii) Show that \(M^* = \{ v \in C^1[a, b] : J(u, v)|_a^b = 0, \forall u \in M \} \) is also a closed linear subspace of \(C^1[a, b] \), where \(J(u, v) = a_2(vu' - uv') + (a_1 - a_2')uv \).

iii) Suppose that \(\alpha_{i1} = \beta_{i1} = 1 \) and all other coefficients \(\alpha_{ij}, \beta_{ij} \) are zero, so that \(B_1u = u(a), B_2u = u(b) \). Show that \(\{ \sin(k \pi(x - a)/(b - a)) \}_{k=1}^N \) is a linearly independent set of functions in \(M \) for any \(N \) (and hence conclude \(M \) is an infinite-dimensional subspace of \(C^1[a, b] \)).

23. Let \(X, \| \cdot \| \) be a normed linear space. Show that:

1. \(\| \cdot \| : X \to [0, \infty) \) is a Lipschitz function on \(X \) with constant \(\rho = 1 \).

2. addition is a continuous operation; that is \(u_n + v_n \to u + v \), as \(n \to \infty \), whenever \(u_n \to u \) and \(v_n \to v \), as \(n \to \infty \).

3. scalar multiplication is a continuous operation; that is \(s_n u_n \to su \), as \(n \to \infty \), whenever \(s_n \to s \) and \(u_n \to u \), as \(n \to \infty \).

24. Let \(x \in \mathbb{R}^n \) and define \(||x||_p = (\sum_{i=1}^{n} |x_i|^p)^{1/p} \), for \(p \geq 1 \). Hölder’s inequality states that if \(p, q \in (1, \infty) \) satisfy \(\frac{1}{p} + \frac{1}{q} = 1 \) then

\[
\sum_{i=1}^{n} |x_i y_i| \leq ||x||_p ||y||_q, \quad \forall x, y \in \mathbb{R}^n.
\]
Verify Hölder’s inequality. Hint: See problem 3.7 on page 264.

25. The function \(\| \cdot \|_p \) is a norm on \(\mathbb{R}^n \) for all \(p \in [1, \infty] \). This is easy to show if \(p = 1 \) or \(\infty \). Show that \(\| \cdot \|_p \) is a norm on \(\mathbb{R}^n \) if \(1 < p < \infty \).

Hint: The triangle inequality in this case is Minkowski’s inequality
\[
\|x + y\|_p \leq \|x\|_p + \|y\|_p, \quad x, y \in \mathbb{R}^n.
\]
Verify Minkowski’s inequality by applying Hölder’s inequality to the terms on the right of the inequality
\[
\sum_{i=1}^{n} |x_i + y_i|^p \leq \sum_{i=1}^{n} |x_i + y_i|^{p-1}|x_i| + \sum_{i=1}^{n} |x_i + y_i|^{p-1}|y_i|.
\]

26. Use the contraction mapping theorem to prove the following.

The Implicit Function Theorem Let \(f(x, y) \) and \(f_y(x, y) \) be continuous functions on the rectangle \(\mathcal{R} = (a, b) \times (c, d) \subset \mathbb{R}^2 \) containing the point \((x_0, y_0)\). If \(f(x_0, y_0) = 0 \) and \(f_y(x_0, y_0) \neq 0 \) then there are positive numbers \(\alpha, \beta > 0 \) determining subintervals \([x_0 - \alpha, x_0 + \alpha] \subset (a, b), [y_0 - \beta, y_0 + \beta] \subset (c, d)\) such that there is a unique continuous function \(y = \psi(x) \), defined on \([x_0 - \alpha, x_0 + \alpha]\), satisfying \(\psi(x_0) = y_0 \) and \(f(x, \psi(x)) = 0 \), \(x \in [x_0 - \alpha, x_0 + \alpha] \).

Hint: Problem 4.12 on page 283 treats a simpler version of the implicit function theorem. For the version considered here you need to consider a subset \(B = \{y \in C[x_0 - \alpha, x_0 + \alpha] : |y(x) - y_0| \leq \beta, x \in [x_0 - \alpha, x_0 + \alpha]\} \) of the Banach space \(C[x_0 - \alpha, x_0 + \alpha] \). See also problem 4.9 on page 282.

27. Let \([a, b] \subset \mathbb{R}\) be a bounded interval and \(f : [a, b] \to [a, b] \) be a continuous function satisfying \(|f(x) - f(y)| < |x - y| \) for all \(x, y \in [a, b] \) with \(x \neq y \). Show that \(f \) has a unique fixed point in \([a, b]\). Hint: See problem 4.2 on page 280.

28. Show that the function \(f(x) = \ln(1 + e^x) \) satisfies \(|f(x) - f(y)| < |x - y| \) for all \(x \neq y \). Does the previous result apply?

29. The set of points in the plane \(\mathbb{R}^2 \) is a Hilbert space when the Euclidean norm \(\|x\| = \sqrt{x_1^2 + x_2^2} \) is used, which we assume in the exercise. For \(m \in \mathbb{R} \) define \(M = \{x \in \mathbb{R}^2 : x_2 = mx_1\} \). It is easy to see that \(M \) is a closed subspace of \(\mathbb{R}^2 \). Define a mapping \(Q : \mathbb{R}^2 \to M \) by \(Qx = (x_1, mx_1) \).

1. Show that \(Q \) is a linear operator.

2. Show that \(Q \) is a projection operator by showing that it is idempotent (i.e. \(Q^2 = Q \)).

3. Show that \(Q \) is bounded and determine the norm \(\|Q\| \) of \(Q \).

4. Let \(P \) denote the orthogonal projection operator onto \(M \). Determine an algebraic rule for \(P \) (analogous to the one for \(Q \)).

5. Show that \(P = Q \) if and only if \(m = 0 \).
30. Let \((a, b) \subset \mathbb{R}\) be a bounded interval. A function \(u(x)\) defined on \((a, b)\) is said to be Hölder continuous on \((a, b)\) with exponent \(\alpha \in (0, 1]\) if there is a constant \(C\) such that
\[
|u(x) - u(y)| \leq C|x - y|^{\alpha}, \quad \forall x, y \in (a, b).
\] (2)
If \(\alpha = 1\) this is the same as Lipschitz continuity. Let \(C^{0,\alpha}(a, b) = \{u \in C(a, b) : u\) satisfies (2) \} denote the set of functions that are Hölder continuous on \((a, b)\) with exponent \(\alpha\). If \(u \in C^{0,\alpha}(a, b)\) then the number
\[
[u]_{0,\alpha} = \sup \left\{ \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} : x, y \in (a, b), \ x \neq y \right\}
\]
is well-defined.

1. Let \(u(x) = \sqrt{x}\). Show that \(u \in C^{0,\frac{1}{2}}(0, 1)\) but \(u \notin C^{0,1}(0, 1)\).

2. Show that if \(0 \leq \alpha < \beta \leq 1\) then \(C^{0,\beta}(a, b) \subset C^{0,\alpha}(a, b)\).

3. Show that \(C^{0,\alpha}(a, b)\) is a linear subspace of \(C(a, b)\).

4. Show that \(C^{0,\alpha}(a, b)\) is a Banach space with the norm
\[
\|u\|_{0,\alpha} = \|u\|_{\infty} + [u]_{0,\alpha}.
\]

5. Let \(0 \leq \alpha < \beta \leq 1\). Then the inclusion mapping \(i : C^{0,\beta}(a, b) \rightarrow C^{0,\alpha}(a, b)\) is a linear operator. Show that it is an imbedding by showing that it is bounded .

31. Let \(a \in (0, 1)\) and define \(\delta_a\) to be the distribution \(\delta_a(\phi) = \phi(a), \phi \in C_c^\infty(0, 1)\). It can be shown that \(H^1_0(0, 1) \subset C[0, 1]\) is an imbedding. That is, the inclusion map is a well-defined bounded linear functional. Hence
\[
|\delta_a(u)| = |u(a)| \leq \|u\|_{\infty} \leq C|u|_{1,2}, \quad \forall u \in H^1_0(0, 1).
\] (3)
Recall that a norm and inner product on \(H^1_0(0, 1)\) is defined by
\[
<u, v>_{1,2} = \int_0^1 u'(x)v'(x) \, dx, \quad |u|_{1,2} = \sqrt{<u, u>_{1,2}}.
\]
The inequality (3) shows that \(\delta_a \in [H^1_0(0, 1)]^*\) is a continuous linear functional on \(H^1_0(0, 1)\). Therefore, according to the Riesz representation theorem there is a unique function \(v \in H^1_0(0, 1)\) such that \(\delta_a(u) = <u, v>_{1,2}\) for all \(u \in H^1_0(0, 1)\). Find \(v\).

32. Let \(X\) be a Banach space with norm \(\| \cdot \|\) and let \(B(X)\) denote the set of all bounded linear operators \(T : X \rightarrow X\). With vector addition and scalar multiplication defined by \((T_1 + T_2)(x) = T_1(x) + T_2(x)\) and \((sT)(x) = s(T(x))\) respectively, it is easy to verify that \(B(X)\) is a linear space.

1. Show that \(\|T\| = \sup \{\|Tx\|/\|x\| : x \in X, \ x \neq 0\}\) is a norm on \(B(X)\).

2. Show that \(B(X)\) is complete and therefore a Banach space.
3. Show that the subset $\mathcal{H}(X) = \{T \in B(X) : T \text{ has a bounded inverse on } X\}$ is an open subset of $B(X)$. (Hint: Use a Neumann series argument.)

33. Consider the operator A in $L^2(-1,1)$ (square-integrable real-valued functions) defined by

$$(Au)(x) = -\frac{2}{3}u(x) + \int_{-1}^{1} y^2 u(y) \, dy.$$

Determine $\mathcal{N}(A)$, $\mathcal{R}(A)$, A^*, $\mathcal{N}(A^*)$, $\mathcal{R}(A^*)$. Does the identity $\mathcal{R}(A) = \mathcal{N}(A^*)^\perp$ hold in this case? When $f \in \mathcal{R}(A)$ find the minimum norm solution of $Au = f$. (This is essentially part (b) of problem 5.4 on page 346)

34. Let $Au = -u''$ be the closed densely-defined operator in $L^2(0,1)$ (square-integrable complex-valued functions) with domain $\mathcal{D}(A) = \{u \in H^2(0,1) : u(0) = 0, \: u(1) + u'(1) = 0\}$.

1. Show that all the eigenvalues of A are real, and characterize them well enough to resolve the next two problems.

2. Show that the eigenvalues of A are bounded from below but not from above.

3. Determine a fairly accurate estimate of the smallest eigenvalue.

35. Let A_1, A_2, A_3 denote the closed densely-defined unbounded linear operators in $L^2(0,1)$ (square-integrable complex-valued functions) defined by

$$A_1 u = i \frac{du}{dt}, \quad \mathcal{D}(A_1) = H^1(0,1)$$
$$A_2 u = i \frac{du}{dt}, \quad \mathcal{D}(A_2) = \{u \in H^1(0,1) : u(0) = u(1)\}$$
$$A_3 u = i \frac{du}{dt}, \quad \mathcal{D}(A_3) = \{u \in H^1(0,1) : u(0) = u(1) = 0\}$$

As usual $i = \sqrt{-1}$ is the imaginary unit. Determine the adjoint operators A_1^*, A_2^*, A_3^*. Are any of these operators symmetric or self-adjoint?

36. Consider the integral operator $K : L^2(0,1) \to L^2(0,1)$ defined by

$$(Ku)(x) = \int_{0}^{1} (1 + xy) u(y) \, dy.$$

1. Find all the non-zero eigenvalues of K and the corresponding eigenfunctions.

2. Determine $\mathcal{N}(K)$.

3. Discuss the solvability of the Fredholm equation $Ku - \lambda u = f$, for all $\lambda \in \mathbb{C}$. Include a description of all solutions and any compatibility conditions required of f.

Hint: The kernel $k(x, y) = 1 + xy$ is separable.

37. Consider the integral operator $K : L^2(0, 1) \rightarrow L^2(0, 1)$ defined by

$$(Ku)(x) = \int_0^1 k(x, y) u(y) \, dy = \int_0^x u(y) \, dy$$

defined by the kernel $k(x, y) = 1$ if $x > y$ and $k(x, y) = 0$ otherwise.

1. Determine the adjoint operator K^*.

2. Determine the operators $R = KK^*$ and $L = K^*K$ and show that they are symmetric non-negative integral operators.

3. Show that the eigenvalue problem for L is equivalent to a boundary value problem.

4. Find the “singular system” describe in exercise 3.2 on page 400 for the operator K

Hint: See exercises 3.2 and 3.4 on pages 400-401.

38. Assuming $\beta \in (0, 1)$, find the smallest eigenvalue of the regular Sturm-Liouville problem

$$\phi'' + \lambda \phi = 0, \quad 0 < x < 1,$$

$$\phi(0) = 0, \quad \phi(1) - \beta \phi'(1) = 0.$$

Using this example show that there are regular Sturm-Liouville problems having negative eigenvalues which are arbitrarily large in magnitude.

39. Consider the regular Sturm-Liouville problem

$$\frac{d}{dx} \left(p(x) \frac{d\phi}{dx} \right) + \left(q(x) + \lambda r(x) \right) \phi = 0, \quad a < x < b,$$

$$\phi(a) \cos \alpha - \phi'(a) \sin \alpha = 0, \quad \phi(b) \cos \beta + \phi'(b) \sin \beta = 0.$$

Show that if $\phi(x)$ and $\psi(x)$ are eigenfunctions corresponding to the same eigenvalue λ then $\psi(x) = C\phi(x)$ for some constant C. (This shows that the eigenvalues of a regular Sturm-Liouville problem with unmixed boundary conditions are simple.)

Hint: Consider $z(x) = \phi'(a)\psi(x) - \psi'(a)\phi(x)$

40. Find the eigenvalues and eigenfunctions of the problem

$$\phi'' + \lambda \phi = 0, \quad 0 < x < 2\pi,$$

$$\phi(0) = \phi(2\pi), \quad \phi'(0) = \phi'(2\pi).$$

(This problem provides an example showing that if the boundary conditions are of mixed type then the eigenvalues may have geometric multiplicity two.)
41. Let \(B_a = \{ x \in \mathbb{R}^3 : \| x \|_2 < a \} \) denote the ball of radius \(a \) centered at the origin, and consider the initial-boundary value problem

\[
\begin{align*}
&u_t = \Delta u, \quad (t, x) \in (0, \infty) \times B_a \\
&u(t, x) = 0, \quad (t, x) \in (0, \infty) \times \partial B_a \\
&u(0, x) = u_0(x), \quad x \in B_a.
\end{align*}
\]

If \(u_0 \) is radially symmetric (i.e. \(u_0(x) = f(\rho) \), where \(\rho = \| x \|_2 \)) then the solution \(u \) will also be radially symmetric (i.e \(u = u(t, \rho) \)). In this case one should use spherical coordinates. Since for a radially symmetric function \(u \) one has

\[
\Delta u = \frac{\partial^2 u}{\partial \rho^2} + \frac{2}{\rho} \frac{\partial u}{\partial \rho}
\]

the PDE becomes \(u_t = u_{\rho\rho} + \frac{2}{\rho} u_\rho \). Use separation of variables to find the radially symmetric solution when \(u_0 = f(\rho) \).

Hint: You will need to change variables \(\eta(\rho) = \rho \phi(\rho) \) in the eigenvalue problem to arrive at a more familiar problem.

42. Find the solution of the Cauchy problem

\[
yu_x + xu_y = x^2 + y^2, \quad u(x, 0) = \ln x, \quad x > 0,
\]

that is valid in the half-plane \(\{(x, y) \in \mathbb{R}^2 : x > 0\} \). Can the solution be extended to a larger region?

Hint: An easy way to solve the system \(x' = -y, \ y' = x \) is to compute \(x'' \) in terms of \(x \), solve for \(x \) and then compute \(y \).

43. Find a product solution \(u = \phi(x)\psi(y) \) of the Cauchy problem

\[
u_{xx} + u_{yy} = 0, \quad (x, y) \in \{(x, y) \in \mathbb{R}^2 : x > 0\}
\]

\[
u(0, y) = 0, \quad u_x(0, y) = \delta \sin(\alpha y).
\]

Clearly the data for this problem satisfies \(\| u(0, y) \|_{C(\mathbb{R})} + \| u_x(0, y) \|_{C(\mathbb{R})} \leq \delta \), for any \(\alpha \in \mathbb{R} \), where the norms are the usual maximum norms. Show that for any point \((x_0, y_0) \), with \(x_0 > 0 \) and \(y_0 \neq 0 \), there is sequence \(\{\alpha_n\} \) that determines a sequence of initial data such that the corresponding solutions \(\{u_n(x, y)\} \) satisfy

\[
\lim_{n \to \infty} |u_n(x_0, y_0)| = \infty.
\]

This shows that the Cauchy problem for Laplace’s equation is an ill-posed problem, since solutions do not depend continuously on the data.

44. Let \(\mathcal{R} = (0, a) \times (0, b) \), where \(a/b \) is a rational number. Show that there is a non-trivial solution of the boundary value problem for the wave equation

\[
u_{xx} - u_{yy} = 0, \quad (x, y) \in \mathcal{R} \quad u(x, y) = 0, \quad (x, y) \in \partial \mathcal{R}.
\]

Thus the boundary value problem for the wave equation is an ill-posed problem since solutions are not unique.

45. A classic example of a PDE that changes type is Tricomi’s equation \(yu_{xx} + u_{yy} = 0 \). Determine the points in the \(xy \)-plane at which Tricomi’s equation is hyperbolic, parabolic and elliptic. In the hyperbolic region change to characteristic coordinates to obtain the canonical form.