6. Assuming that \(f'' > 0 \), find solutions of the conservation law \(u_t + (f(u))_x = 0 \) in the form \(u(x,t) = \theta(x/t) \) (these are sometimes called simple waves).

7. Let

\[
\begin{align*}
 u_1(x,t) &= \begin{cases}
 1 & x < \frac{t}{2} \\
 0 & x > \frac{t}{2}
 \end{cases} \\
 u_2(x,t) &= \begin{cases}
 1 & x < t \\
 0 & x > t
 \end{cases}
\end{align*}
\]

Show directly from the definition (page 136 in text, where the terminology 'integral solution' is used) that \(u_1 \) is weak solution of

\[
 u_t + uu_x = 0 \quad x \in \mathbb{R} \quad t > 0
\]

\[
u(x,0) = \begin{cases}
 1 & x < 0 \\
 0 & x > 0
\end{cases}
\]

but \(u_2 \) is not.