26. Define the translation operator \(Tu(x) = u(x - 1) \) on \(L^2(\mathbb{R}) \).
 a) Find \(T^* \).
 b) Show that \(T \) is unitary.
 c) Show that \(\sigma(T) = \sigma_c(T) = \{ \lambda \in \mathbb{C} : |\lambda| = 1 \} \).

27. Let \(Tu(x) = \int_0^x K(x, y)u(y) \, dy \) be a Volterra integral operator on \(L^2(0, 1) \) with a bounded kernel, \(|K(x, y)| \leq M \). Show that \(\sigma(T) = \{0\} \). (There are several ways to show that \(T \) has no nonzero eigenvalues. Here is one approach: Define the equivalent norm on \(L^2(0, 1) \)
 \[
 \|u\|_\theta^2 = \int_0^1 u^2(x)e^{-2\theta x} \, dx
 \]
 and show that the supremum of \(\frac{\|Tu\|_\theta}{\|u\|_\theta} \) can be made arbitrarily small by choosing \(\theta \) sufficiently large.)

28. Let \(T \) be the integral operator
 \[
 Tu(x) = \int_0^1 (x + y)u(y) \, dy
 \]
on \(L^2(0, 1) \). Find \(\sigma_p(T) \), \(\sigma_c(T) \) and \(\sigma_r(T) \) and the multiplicity of each eigenvalue.

29. Show that if \(S \in \mathcal{B}(H) \) and \(T \) is compact, then \(TS \) and \(ST \) are also compact. (In algebraic terms this means that the set of compact operators is an \textit{ideal} in \(\mathcal{B}(H) \).)

30. If \(T \in \mathcal{B}(H) \) and \(T^*T \) is compact, show that \(T \) must be compact. Use this to show that if \(T \) is compact then \(T^* \) must also be compact.