1. (8 points) Let \(A = \begin{bmatrix} 2 & 1 & z \\ 0 & 3 & 1 \\ 1 & z & 4 \end{bmatrix} \).

a) Compute \(\det A \).

b) Using the result of a) find all values of \(z \) for which \(A \) is invertible.

2. (4 points) Suppose that a matrix \(U \) has the property that \(U^T = U^{-1} \) (such a matrix is said to be orthogonal). Show that \(\det U = \pm 1 \).
3. (8 points) Let

\[A = \begin{bmatrix} 1 & -2 & 2 \\ 0 & 5 & 0 \\ 2 & 1 & 4 \end{bmatrix} \]

Find the eigenvalues and their algebraic multiplicities.