‘Theorem’. All horses are the same color.

Proof: Let S_n denote the statement that for any group of n horses, they all have the same color. Clearly with just 1 horse, all of the horses have the same color, so S_1 is true. Now, for the induction step: we’ll show that if it is true for any group of n horses, that all have the same color, then it is true for any group of $n + 1$ horses. Given any set of $n + 1$ horses, if you exclude the last horse, you get a set of n horses. By the induction step these n horses all have the same color. But by excluding the first horse in the pack of $n + 1$ horses, you can conclude that the last n horses also have the same color. Therefore all $n + 1$ horses have the same color. Thus S_n implies S_{n+1}, so the statement is true for all n. □

This example is usually attributed to the mathematician George Polya (1887-1985).