Physics 481 Final Exam Spring 2006

The total number of points for this exam is 48. You have 2.0 hours to complete the exam. Show all your work so that I can see how you arrived at the answer. You may use Griffith “Introduction to Quantum Mechanics” and the lecture notes to look up any relevant formulas.

1. Consider a particle with mass \(m \) in the ground state \(\psi_0 \) of the one-dimensional simple harmonic oscillator potential
\[
V = \frac{1}{2}m\omega^2x^2.
\]

(a) (10 points) At time \(t = 0 \) a perturbation is introduced
\[
W(x, t) = A\omega^2 e^{-t/\tau}.
\]
Calculate the probability in first-order time-dependent perturbation theory to find the particle after a long time in an excited state \(\psi_n, n \geq 1 \). Consider all \(n \neq 0 \).

(b) (5 points) Instead of the time-dependent perturbation in part (a), consider the unperturbed potential to be slowly changed to
\[
V' = 2m\omega^2x^2,
\]
where the change occurs during a time interval \(0 \leq t \leq T \) where \(T \gg 1/\omega \). In what state is the particle and what is its energy at a time \(t \gg T \)?

2. A free particle of mass \(m \), traveling with momentum \(p \) parallel to the \(z \)-axis scatters elastically from the double spherical \(\delta \)-function shell potential
\[
V(\vec{r}) = V_1\delta(r - a_1) - V_2\delta(r - a_2)
\]
where \(V_1, V_2, a_1 \) and \(a_2 \) are positive constants.

(a) (5 points) Give the scattering amplitude \(f(\theta) \) in the Born approximation. Make the dependence on the scattering angle \(\theta \) and on \(k = p/\hbar \) explicit in your answers.

(b) (5 points) Calculate the differential scattering cross section \(d\sigma/d\Omega \) and the total cross section \(\sigma \) for low-energy scattering (i.e. \(ka_1 \ll 1 \) and \(ka_2 \ll 1 \)) for the above potential.

(c) (5 points) Consider the above potential with \(V_1 = 2V_2 \) and fixed \(a_1 \). For which value of \(a_2 \) (expressed in terms of \(a_1 \)) does the low-energy scattering amplitude vanish? Explain the physical phenomenon for this case.

(over)
3. Short answer problems:

(a) (6 points) For a sinusoidal time-dependent perturbation, the result from first-order time-dependent perturbation theory is only valid in a certain time interval. Explain the boundaries of this interval.

(b) (4 points) In the calculation of the interaction of a hydrogen atom with visible light, we have used the so-called dipole approximation. The dipole approximation is valid for (choose one or more)

i. x-rays,
ii. microwaves,
iii. electromagnetic waves of all wavelengths,
iv. none of the above.

(c) (4 points) Explain why for low-energy scattering the differential cross-section for the soft-sphere potential

\[V(r) = \begin{cases} \frac{3V_0}{4\pi} & \text{if } r \leq a, \\ 0 & \text{if } r > a, \end{cases} \]

and for the soft-cube potential

\[V(r) = \begin{cases} V_0 & \text{if } -\frac{a}{2} \leq x, y, z \leq \frac{a}{2} \\ 0 & \text{otherwise.} \end{cases} \]

are the same.

(d) (4 points) An electromagnetic wave traveling in the y direction with its electric field polarized along the z direction is absorbed by a hydrogen atom. Which selection rules apply to this case?

Good luck !