R code for contingency tables

prop.r: R code for proportions and
contingency tables

N.B. many of these calculations are as easy by hand
as by R functions

ci or test for a single proportion: prop.test(),
default PI0 = 0.5
two ways to specify data

1) 2 column matrix with # success, # failure
prop.test(t(c(20,40)))

2) 2 arguments y, n = # success, # trials
prop.test(20,60)

c
© Dept. Statistics, Iowa State U. ()
Stat 511 - part 2b
Spring 2013 1 / 9

can specify your own PI0 (p=, or 3rd argument)
prop.test(t(c(20,40)), p=0.7)

all above give you tests (Chi-square = Z^2) and ci's
ci's from inverting a score test
i.e. using null probability to calculate variance
so in first 2 examples, upper ci limit is 0.4679
p <- 0.4679; p - 1.96*sqrt(p*(1-p)/60) = 0.5

N.B. the above uses a continuity correction
'when needed'. I don’t know R's 'when needed'
R does report whether it is or is not used
if you really don’t want it (I really don’t want it)
I recommend add ‘‘correct = F’’ to the call

difference / equality of two proportions:
1) Chi-square test of equality + ci for difference
prop.test(rbind(c(20,40), c(50,50)))

note above uses continuity correction, now turn off
prop.test(rbind(c(20,40), c(50,50)), correct=F)

different ci and p-value.

2) Chi-square test only
chisq.test(rbind(c(20,40), c(50,50)), correct=F)

chisq.test() can be used for general R x C tables
my understanding is that prop.test() can only be
used for R x 2 tables

c
© Dept. Statistics, Iowa State U. ()
Stat 511 - part 2b
Spring 2013 2 / 9

can pass two factor variables to chisq.test(),
e.g. chisq.test(factor1, factor2, correct=F)
and chisq.test will construct the contingency
table, then calculate the Chi-square statistic

© Dept. Statistics, Iowa State U. ()
Stat 511 - part 2b
Spring 2013 3 / 9

© Dept. Statistics, Iowa State U. ()
Stat 511 - part 2b
Spring 2013 4 / 9
Chi-square test against specified probabilities
E.g. count events per 5 minutes for 100 5 minute periods. Data is 13, 30, 27, 14, 10, 3, 1, 1, 1
i.e. 0 events in 13 periods, 1 event in 30 periods, ...
8 events in 1 period
are these consistent with a Poisson(mean=2.5)
distribution?

have to expand one category so probabilities
sum to 1
P[8 events] is turned into P[8 or more]
= 1-P[7 or less]

chisq.test(c(13,30,27,14,10,3,1,1,1),
p=c(dpois(0:7,2.5),1-ppois(7,2.5)))

Odds ratios

if you don’t want to calculate odds ratios
‘by hand’, the oddsratio() set of functions in
the epitools package provides many different
ways to estimate / calculate ci’s for odds
the differences among the approaches are 557
(Categorical Data) material, not 511 material.
fisher.test() calculates the odds ratio we’ve used

Fisher exact test

Fisher exact test: not really necessary with
this size sample.
one of the stat computing miracles of the late
1990’s was a very fast algorithm for enumerating
possible contingency tables
also gives you the estimated odds ratio

fisher.test(rbind(c(20,40), c(50,50)))

Here’s when you need Fisher: lecture example
fisher.test(rbind(c(1,7), c(4,4)))

very different p-value than from:
chisq.test(rbind(c(1,7), c(4,4)),correct=F)
(but continuity corrected version is close)

can also give two columns (response on
variable 1, response on variable 2)
fisher.test will compute the contingency table
just like chisq.test()

both chisq.test() and fisher.test() can be used
with general R x C tables
McNemar's test

McNemar's test
can do it by hand (binomial tail probability)
or by mcnemar.test()
made up data: 20 pairs with ++, 5 with +-, 20 with -+, 30 with --

mcnemar.test(rbind(c(20,5), c(20,30)), correct=F)

by hand, to get "exact" p-value
2*pbinom(5,25,0.5)
5 from #(++), 25 from #(+-) + #(-+)
if #(+-) > n/2, add lower=F to get correct tail