1. Road signs with gunshot holes
 (a) Poisson sampling
 because the total number of signs per state is random
 (b) Either $\chi^2 = 25.46$, χ^2 distribution, or $Z = \pm 5.05$, $N(0,1)$ distribution
 Available in both SAS and R output
 (c) $\chi^2 = 4.71$, χ^2 distribution.
 Note: This is based on only the data on shot-at signs, with log-time offset
 Available in the SAS output, but not the R output
 (d) $Y_{ij} \sim \text{Pois}(\exp(o_{ij} \ast (\mu + \alpha_i)))$. i indexes states, j indexes road segment (mile)
 Notes: 1) Y_{ij}: count of shot-at-signs in a road segment
 o_{ij}: length of that road segment (1 mile by definition)
 2) If you answered using $X\beta$, I deducted 2 points because $X\beta$ describes any model!
 3) If you added an additional $+\epsilon$, I deducted 2 points, because that is a hangover from
 normal models
 (e) estimate log-ratio: $\log \frac{\mu_{UT}}{\mu_{NV}} = 0.0198$
 Note: available in SAS output, not in R output
 (f) se = 0.33 = 0.244 $\times \sqrt{OD}$, where the overdispersion factor = 1.86
 Note: available in SAS output, not in R output

2. Combines
 (a) 3 sizes of eu: fields, field-parts, and field-bits
 (b) slope \rightarrow fields, design \rightarrow field-parts, and speed \rightarrow field-bits
 (c) The non-zero columns of the Z matrix are:

<table>
<thead>
<tr>
<th>fields</th>
<th>parts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 0 0</td>
<td></td>
</tr>
<tr>
<td>1 0 1 0 0</td>
<td></td>
</tr>
<tr>
<td>0 1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>0 1 0 0 1</td>
<td></td>
</tr>
</tbody>
</table>

 Notes: The first two observations are from the same field and field-part (because same
design). The third observation is a different field and field-part. The fourth is the same
field as the third but a different field-part (because different design). Some common
issues were including columns for the errors (not part of Z) and including parts of the
X matrix.
(d)

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>slope</td>
<td>2</td>
</tr>
<tr>
<td>field(slope)</td>
<td>9</td>
</tr>
<tr>
<td>design</td>
<td>2</td>
</tr>
<tr>
<td>slope*design</td>
<td>4</td>
</tr>
<tr>
<td>part(field, slope)</td>
<td>18</td>
</tr>
<tr>
<td>speed</td>
<td>3</td>
</tr>
<tr>
<td>speed*slope</td>
<td>6</td>
</tr>
<tr>
<td>speed*design</td>
<td>6</td>
</tr>
<tr>
<td>speedslopedesign</td>
<td>12</td>
</tr>
<tr>
<td>error</td>
<td>81</td>
</tr>
<tr>
<td>c. total</td>
<td>143</td>
</tr>
</tbody>
</table>

Note: This stumped everyone and really stumped a few.

3. Vitamin A - study 1

(a)

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age group</td>
<td>2</td>
</tr>
<tr>
<td>Subj(age)</td>
<td>27</td>
</tr>
<tr>
<td>Type</td>
<td>1</td>
</tr>
<tr>
<td>Age*type</td>
<td>2</td>
</tr>
<tr>
<td>Error</td>
<td>267</td>
</tr>
<tr>
<td>c. total</td>
<td>299</td>
</tr>
</tbody>
</table>

(b) Fixed: age group, type, and age*type interaction
Random: subject(age)
Note: subject(age) is random because it is an error term

(c)

\[
EMS = E \frac{nm}{t-1} \sum (\overline{y}_{i...} - \overline{y}_{...})^2
\]

\[
= \frac{nm}{t-1} E \sum \left[(\mu + \alpha_i + \beta_j + \alpha\beta_{ij} + \tau_{i...} + \varepsilon_{i...}) - (\mu + \alpha. + \beta. + \alpha\beta.. + \tau.. + \varepsilon....) \right]^2
\]

\[
= \frac{nm}{t-1} \left[\sum (\alpha_i - \alpha.) \beta_j - \alpha\beta_{ij} \right]^2 + E \sum (\tau_{i...} - \tau...)^2 + E \sum (\varepsilon_{i...} - \varepsilon....)^2
\]

\[
= \frac{nm}{t-1} \left[Q(t) + \frac{t-1}{n} \sigma_u^2 + \frac{t-1}{nm} \sigma_e^2 \right]
\]

\[
= \frac{nm}{t-1} Q(t) + 10 \sigma_u^2 + \sigma_e^2
\]

(d)

\[
VarC Y = \sum C_i^2 Var Y
\]

\[
= (1 + 1.09 + 1.69) \left(\frac{\sigma_u^2}{10} + \frac{\sigma_e^2}{100} \right)
\]

\[
= 2.78 \left(\frac{\sigma_u^2}{10} + \frac{\sigma_e^2}{100} \right)
\]
(e) \(\text{E MS for subj(trt)} = 10\sigma_u^2 + \sigma_e^2 \), so the estimate of the desired quantity is \(\frac{2.78}{100} \cdot MS_{subj(trt)} \).

4. Vitamin A - study 2

(a) \(\sigma_e^2 \).
Note: A few people calculated the MS. That’s not the expected value.

(b) No. Those observations provide information about the variability between subjects.
Notes: Those observations provide no information about the error variance (because there is only one observation per subject). They provide no information about the age group mean (because the 1 df is “used” to estimate the subject effect).

(c) \(\hat{\sigma}_u^2 = 249.3 \)
The calculations: \(MS_{subj} = 57298/42 = 1,364.2 \), \(MS_{error} = 4650.6/198 = 23.5 \), \(1364.2 = 23.5 + 5.3776\hat{\sigma}_u^2 \), and solve for \(\hat{\sigma}_u^2 \).

(d) This is a test of \(\sigma_u^2 = 0 \). \(F = 1364.7/23.5 = 50.8 \). Central F distribution with 42,198 df.

(e) The appropriate denominator is \(\sigma_e^2 + 5.7089\hat{\sigma}_u^2 \), which is estimated as \(23.5 + 5.7089 \cdot 249.3 = 1446.7 \).

(f) To get the correct coefficient for \(\sigma_u^2 \), you need to multiply \(MS_{subj} \) by \(\frac{5.7089}{5.3776} = 1.0616 \).
The desired linear combination of Mean Squares is \(1.0616 \cdot MS_{subj} - 0.0616 \cdot MS_{error} \).
Using the Cochran-Satterthwaite approximation, you get

\[
\hat{\nu} = \frac{[1.0616 \cdot 1364.2 - 0.0616 \cdot 23.5]^2}{[1.0616^2 \cdot 1364.2^2/42 + 0.0616^2 \cdot 23.5^2/198]}
= \frac{2,093,222.2}{49,937.1 + 200.1}
= 41.7
\]

Note: different amounts of round off will give slightly different answers. If you were close and doing the right thing, you got full credit.