Chapter 7, Section 7.1

Inference for population means, σ unknown

When the population standard deviation σ is unknown we have to estimate it first based on the collected data using the sample standard deviation s.

$$
s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}
$$

Using s instead of σ adds more variability to the distribution of $\frac{\bar{x} - \mu}{s}$, so we need a distribution with heavier tails.

The t-distribution accounts for the additional variation by having heavier tails (see graph next page).

Recall that the normal distribution is characterized by two parameters:

- μ (the mean) and
- σ (the standard deviation)

The t-distribution is characterized by a single parameter, the so-called

- “degrees of freedom” (short: df)

As the degrees of freedom increase, the t-distribution approaches the standard normal distribution $N(0,1)$.

Why? As the sample size increases, s estimates σ more accurately because we have more information about the population standard deviation in our sample.
Section 7.1 — Inference for population means, σ unknown

Reading the t-table (Table D)

- t-distribution is symmetric
- It is characterized by the degrees of freedom

Finding critical values t^* for a t-distribution (Table D)

Example:
- 95% percentile of a t-distribution with df=5:

 t^* is the critical value such that the area to the right (upper tail probability) of t^* is equal to 0.05 (or 5%)

- Look down the “df” column (first column on left) to 5
- At the top of the table, find the right tail (upper tail) probability of 0.05
- The critical value t^* corresponds to where row and column intersect, which is $t^* = 2.015$

Note: t-table works with the area above (right) while z-table works with area below (left)
Section 7.1 — Inference for population means, σ unknown

CONFIDENCE INTERVALS FOR μ WHEN σ IS UNKNOWN

- A $(1 - \alpha) \cdot 100\%$ confidence interval for μ is given by
 \[
 \left[\bar{x} \pm t^* \cdot \frac{s}{\sqrt{n}} \right]
 \]
- just change σ to s and z^* to t^*
- look up t^* corresponding to a t-distribution with $df = n - 1$

Example: A random sample of 30 pills yielded a mean level of 20.5 mg of aspirin and a standard deviation of 1.5 mg. Find a 95% confidence interval for the mean level μ of aspirin in a pill.

What about assumptions for the t-test?

- simple random sample (ensuring independence of observations)
- data following a normal distribution or sufficiently large sample size for the CLT to apply

Handout (t-test examples)