Chapter 6

7. (a) To simplify the notation, I will write ξ for the sequence $\langle \xi_\nu \rangle$ and η for the sequence $\langle \eta_\nu \rangle$. We imitate the proof of Minkowski’s inequality for integrals. First, if $p = \infty$, we note that, for any positive integer n, $|\xi_n| \leq ||\xi||_\infty$ and $|\eta_n| \leq ||\eta||_\infty$. The triangle inequality for numbers gives $|\xi_n + \eta_n| \leq |\xi_n| + |\eta_n|$, and therefore $|\xi_n + \eta_n| \leq ||\xi||_\infty + ||\eta||_\infty$. Hence $||\xi + \eta||_\infty \leq ||\xi||_\infty + ||\eta||_\infty$.

If $1 \leq p < \infty$, we first note that if $\xi = 0$ or $\eta = 0$, then the inequality is immediate. If $\xi \neq 0$ and $\eta \neq 0$, we set $\alpha = ||\xi||$ and $\beta = ||\eta||$. We also define sequences $F = \langle F_\nu \rangle$ and $G = \langle G_\nu \rangle$ by $F_\nu = |\xi_\nu|/\alpha$ and $G_\nu = |\eta_\nu|/\beta$, and we set $\lambda = \alpha/(\alpha + \beta)$. Then

$$|\xi_\nu + \eta_\nu|^p \leq (|\xi_\nu| + |\eta_\nu|)^p = [\alpha F_\nu + \beta G_\nu]^p$$

$$= (\alpha + \beta)^p [\lambda F_\nu + (1 - \lambda) G_\nu]^p$$

$$\leq (\alpha + \beta)^p [\lambda F_\nu^p + (1 - \lambda) G_\nu^p]$$

by the convexity of φ defined by $\varphi(t) = t^p$. We now sum on ν to see that

$$\sum |\xi_\nu + \eta_\nu|^p \leq (\alpha + \beta)^p [\lambda \sum F_\nu^p + (1 - \lambda) \sum G_\nu^p] = (\alpha + \beta)^p$$

because $\|F\| = \|G\| = 1$. Therefore

$$||\xi + \eta||_p^p \leq (\alpha + \beta)^p = (||\xi|| + ||\eta||)^p.$$

(b) Now we imitate the proof of Hölder’s inequality for integrals. For $p = 1$, we have

$$\sum |\xi_\nu \eta_\nu| \leq \sum |\xi_\nu| \sup |\eta_\nu| = ||\xi||_1 ||\eta||_\infty,$$

and a similar argument works for $p = \infty$.

For $1 < p < \infty$, we set $F = |\xi|$ and $G = |\eta|$. Then

$$\sum |\xi_\nu \eta_\nu| = \sum F_\nu G_\nu.$$

We now define H by $H_\nu = G_\nu^{q-1}$. Then, for any $t \in (0, 1)$, we have

$$pt F_\nu G_\nu = pt F_\nu H_\nu^{p-1} \leq (H_\nu + tF_\nu)^p - H_\nu^p$$

by Lemma 102. Summing on ν gives

$$pt \sum F_\nu G_\nu \leq \sum (H_\nu + tF_\nu)^p = \sum H_\nu^p = ||H + tF||_p^p + ||H||_p^p.$$

From Minkowski’s inequality, we have $||H + tF||_p \leq ||H||_p + ||tF||_p$, and the properties of norms tell us that $||tF||_p = t ||F||_p$. Therefore

$$pt \sum F_\nu G_\nu \leq (||H||_p + p + t ||F||_p)^p - ||H||_p^p.$$
We now divide by \(pt \) and take the limit as \(t \to 0^+ \) to see that
\[
\sum F_\nu G_\nu \leq \| F \|_p \| H \|_p^{p-1} = \| \xi \|_p \| \eta \|_q.
\]

10. If \(f_n \to f \) in \(L^\infty \), then for any positive integer \(k \), there is a positive integer \(N(k) \) such that \(\| f_n - f \|_\infty \leq \frac{1}{k} \) if \(n \geq N(k) \). Hence, for each \(n \geq N(k) \), there is a set \(A(n, k) \) such that \(mA(n, k) = 0 \) and \(|f_n - f| \leq \frac{1}{k} \) on \(E \setminus A(n, k) \). Now set \(E = \bigcup A(n, k) \), where the union is taken over all positive integers \(k \) and, for each \(k \), over all integers \(n \geq N(k) \). Since the integers are countable, it follows that \(E \) is a countable union of sets of measure zero and hence \(mE = 0 \). On \(\tilde{E} \), we see that, for any positive integer \(k \) and any integer \(n \geq N(k) \), we have \(|f_n - f| < 1/k \). Hence \(f_n \to f \) uniformly on \(\tilde{E} \).

If \(f_n \to f \) uniformly on \(\tilde{E} \) with \(mE = 0 \), it follows that \(\| f_n - f \|_\infty \leq \sup_{\tilde{E}} |f_n - f|, \) so \(\| f_n - f \| \to 0 \).

16. Suppose first that \(f_n \to f \) in \(L^p \). Then set \(g_n = |f_n|^p \) and \(h_n = 2^p|f_n - f|^p + |f|^p \). Then \(g_n \to |f|^p \) and \(h_n \to 2^p|f|^p \) almost everywhere with \(|g_n| \leq h_n \) and \(\int g_n \to \int |f|^p \), so \(\| f_n \|_p \to \| f \|_p \).

Conversely, if \(\| f_n \| \to \| f \| \), we set \(g_n = (|f| + |f_n|)^p \) and \(h_n = 2^p(|f|^p + |f_n|^p) \). Then \(g_n \to 2^p|f|^p \) and \(h_n \to 4^p|f|^p \) almost everywhere. In addition, \(|g_n| \leq h_n \). Since
\[
\| f_n \| \to \| f \|,
\]
we conclude that
\[
\int h_n \to \int h.
\]

Now we use the generalized Lebesgue convergence theorem to conclude that
\[
\int g_n \to \int g.
\]

Finally, we set \(k_n = |f_n - f|^p \). Then \(k_n \to 0 \) almost everywhere and \(|k_n| \leq g_n \).

It follows from the generalized Lebesgue convergence theorem that \(\int k_n \to 0 \) and therefore \(f_n \to f \) in \(L^p \).

19. First, we compute
\[
\| T_\Delta f \|_p^p = \int |T_\Delta f|^p = \sum_{k=1}^n (\xi_{k+1} - \xi_k) \left(\frac{1}{\xi_{k+1} - \xi_k} \right)^p \left| \int_{\xi_k}^{\xi_{k+1}} f(t) \, dt \right|^p
\]
because \(T_\Delta f \) is a step function. Now we do some estimation on the interval \([a, b] \):
\[
\left| \int_a^b f \right| \leq \int_a^b |f| \leq \left(\int_a^b |f|^p \right)^{1/p} \left(\int_a^b 1^q \right)^{1/q},
\]
where \(q = p/(p-1) \). Then
\[
\left(\int_a^b 1^q \right)^{1/q} = (b-a)^{1/q} = (b-a)^{(p-1)/p},
\]
so
\[\|T\Delta f\|_p^p \leq \sum (\xi_{k+1} - \xi_k)(\xi_{k+1} - \xi_k)^{-p}(\xi_{k+1} - \xi_k)^{p-1} \int_{\xi_k}^{\xi_{k+1}} |f|^p \]
\[= \sum \int_{\xi_k}^{\xi_{k+1}} |f|^p = \int |f|^p = \|f\|^p. \]

Analysis Qualifier, Fall, 2008

2. Let \((h_n)\) be a sequence of positive numbers with \(h_n \to 0\). We then define
\[f_n(x) = \frac{1}{h_n} \int_x^{x+h_n} f(t) \, dt. \]
Our goal is to show that \(f_n \to f\) in \(L^1\). (To get the full limit as \(h \to 0^+\), we use problem 2.49f.) First, we suppose that \(f \geq 0\), and we observe that \(f_n \to f\) a.e. by Theorem 5.10. Since \(f \in L^1(\mathbb{R})\), we have that \(F(x) = \int_x^f f(t) \, dt\) is absolutely continuous and \(\lim_{x \to \infty} F(x) = f\). For any finite numbers \(a < b\), we then have
\[\int_a^b f_n = \frac{1}{h_n} \int_a^b F(x + h_n) - f(x) \, dx = \frac{1}{h_n} \left(\int_a^{b+h_n} F - \int_a^{a+h_n} F \right). \]
Next, we set
\[g(s) = \frac{1}{h_n} \int_s^{s+h_n} F. \]
Because \(f \geq 0\), it follows that \(F\) is increasing and hence so is \(g\). Now, given any \(\varepsilon > 0\), there is a constant \(B(\varepsilon)\) such that \(\int f \geq F(x) \geq \int f - \varepsilon\) if \(x \geq B\). For \(x \geq B\), we infer that
\[\int f \geq g(x) \geq \int f - \frac{\varepsilon}{h_n}, \]
so \(\lim_{x \to \infty} g(x) = \int f\) and a similar argument shows that \(\lim_{x \to -\infty} g(x) = 0\). Sending \(b \to \infty\) and \(a \to -\infty\) gives \(f_n \in L^1\), with \(\int f_n = \int f\). We now set \(g_n = f_n + f\) and \(h_n = |f_n - f|\). We have \(|h_n| \leq g_n\) a.e., \(h_n \to 0\) a.e., and \(\int g_n \to 2\int f\). It follows from the generalized Lebesgue convergence theorem that \(\int h_n \to \int 0 = 0\). Therefore
\[\lim \int |f_n - f| = 0. \]
To get the result for \(f\) not necessarily nonnegative, we note that \(f_n = (f^+)_n - (f^-)_n\) with
\[(f^\pm)_n = \frac{1}{h_n} \int_x^{x+h_n} f^\pm(t) \, dt. \]