14. (b) This is the same idea as for part (a). First, write F_n for the set obtained by removing the intervals up to the nth step. Since F_n is the complement of a finite union of open intervals, F_n is closed. In addition, $F = \bigcap_{n=1}^{\infty} F_n$, so F is an intersection of closed sets and hence closed. To show that \tilde{F} is dense, we need to show that there is no (non-empty) open interval contained in F. This fact follows from the observation that, at the nth step, the remaining intervals have length no greater than $(1-\alpha)^{3^{-n}}$. Therefore, for any n, there is no interval of length greater than $(1-\alpha)^{3^{-n}}$ in F. It follows that there is no non-empty open interval in F, so \tilde{F} is dense in $[0, 1]$.

Finally, we write G_n for the union of the intervals removed at the nth step. Then $m(G_n) = (1-\alpha)^{3^{-n}}(3^{-n})^2 - 1$ because there are 2^{n-1} intervals remaining at the beginning of the nth step. It follows that $m(\bigcup G_n) = \sum mG_n = \alpha$.

Since $F = [0, 1] \setminus (\bigcup G_n)$, it follows that $mF = 1 - \alpha$.

15. Let E_i be as in the hint. Then Lemma 12 implies that E_i is measurable with $mE_i = mE$. Since $E_i \subset P_i$, it follows that $E_j \cap E_i = \emptyset$ if $i \neq j$. Therefore
\[\sum mE_i = m\left(\bigcup E_i\right)\]
by Proposition 3.13. Furthermore $\bigcup E_i \subset [0, 1]$, so $m(\bigcup E_i) \leq m[0, 1] = 1$. But
\[\sum mE_i = \sum mE = \infty \cdot mE.\]
If $mE > 0$, then $\infty \cdot mE = \infty$, so we must have $mE = 0$.

17. (a) Let $E_i = P_i$, the set from the construction of a nonmeasurable set. Each P_i is nonmeasurable, so it follows from Lemma 12 that $m^*P_i > 0$. We next prove a variation on Lemma 20. Let A be an arbitrary subset of $[0, 1)$ and let $y \in [0, 1)$. We now set $A_1 = A \cap [0, 1-y)$ and $A_2 = A \cap [1-y, 1)$. Since $[0, 1-y)$ is measurable, we have that
\[m^*A = m^* (A \cap [0, 1-y)) + m^*(A \sim [0, 1-y)) = m^*(A_1) + m^*(A_2).\]
(Note that $A \sim [0, 1-y) = A_2$.) From the translation invariance of Lebesgue outer measure, we conclude that
\[m^*A = m^*(A_1 + y) + m^*(A_2 + y).\]
Next, $A_1 \circ y = (A \circ y) \cap [y, 1)$ and $A_2 \circ y = (A \circ y) \sim [y, 1)$, so the measurability of $[y, 1)$ implies that

$$m^*(A \circ y) = m^*(A_1 \circ y) + m^*(A_2 \circ y).$$

Therefore $m^*A = m^*(A \circ y)$, so $m^* P_i = m^* P$ for all i. It follows that $\sum m^* E_i = \sum m^* P = \infty$ but $m^*(\bigcup E_i) \leq m^* [0, 1) \leq 1$.

(b) Now we take $E_i = [0, 1) \setminus \bigcup_{j=0}^{i} P_j$.

Since $P_{i+1} \subset E_i$, it follows that $m^* E_i \geq m^* P_{i+1} = m^* P > 0$ and therefore $\lim m^* E_i > 0$. On the other hand $\bigcap E_i = \emptyset$, so $m^*(\bigcap E_i) = 0$.

23. Parts of this problem were done in class, but I’ll try to include details here.

(a) For each positive integer n, set $A_n = \{ x : |f(x)| > n \}$. Then each A_n is measurable and $\bigcap A_n = \{ x : f(x) = \infty \text{ or } f(x) = -\infty \}$, so $m(\bigcap A_n) = 0$. Since $A_{n+1} \subset A_n$, Proposition 21 tells us that $\lim m A_n = 0$, so given $\varepsilon > 0$, there is a positive integer M such that $m A_n < \varepsilon/3$ if $n \geq M$. In particular, $m A_M < \varepsilon/3$.

(b) Given $\varepsilon > 0$ and $M \geq 0$, we choose a positive integer N such that $N \varepsilon > M$, and we define

$$B_n = \{ x : -M + n \varepsilon \leq f(x) < -M + (n + 1) \varepsilon \}$$

for $n = 0, \ldots, 2N - 1$. We then take

$$\varphi = \sum_{n=0}^{2N-1} \left(-M + \left[n + \frac{1}{2} \right] \varepsilon \right) \chi_{B_n}.$$

Then $|f(x) - \varphi(x)| \leq \varepsilon/2 < \varepsilon$ if $x \in \bigcup B_n$.

If we know that $m \leq f \leq M$, then we choose the positive integer N such that $N \varepsilon > M - m$ and we define

$$B_n = \{ x : m + n \varepsilon \leq f(x) < m + (n + 1) \varepsilon \}$$

for $n = 0, \ldots, N - 1$, and we define φ as before.

(c) We write the canonical representation of the simple function:

$$\varphi = \sum_{i=1}^{k} a_i \chi_{A_i}.$$

Then, for each i, there is a finite collection of intervals $(I_{i,j})$ such that

$$m^* \left(\left(\bigcup_j I_{i,j} \right) \Delta A_i \right) < \frac{1}{3k} \varepsilon.$$

Note that we may assume that $I_{i,j} \cap I_{i,m} = \emptyset$ if $j \neq m$. We then define $U_i = \bigcup_j I_{i,j}$ and take

$$g = \sum_{i=1}^{k} a_i \chi_{U_i}.$$
Then g is a step function and $g = \varphi$ except on some subset of $A = \bigcup_{i=1}^{k} U_i \Delta A_i$. Since $m^*(U_i \Delta A_i) < \varepsilon/(3k)$, it follows (from countable subadditivity) that

$$mA \leq \sum_{i=1}^{k} m(U_i \Delta A_i) < \frac{\varepsilon}{3}.$$

Hence (by monotonicity of outer measure), $g = \varphi$ except on a set of measure less than $\varepsilon/3$.

If $m \leq \varphi \leq M$, then $m \leq g(x) \leq M$ except on a subset of A. More specifically, this inequality is true as long as x is in only one U_i. For x in the intersection of two or more U_i’s, we redefine $g(x) = m$. This gives a function which agrees with φ outside of A, so this g agrees with φ except on a set of measure less than $\varepsilon/3$ and it satisfies $m \leq g \leq M$.

(d) Let $(x_i)_{i=0}^{n}$ be the points of discontinuity of g (with $x_0 = a$ and $x_n = b$), written in increasing order and choose $\delta > 0$ so that

$$2\delta < \min_i x_i - x_{i-1}, \quad n\delta < \frac{\varepsilon}{3}.$$

(The minimum is over $i = 1, \ldots, n$.) We then define

$$h(x) = \begin{cases} g(x) & \text{if } x_0 \leq x \leq x_1 - \delta \text{ or } x_{n-1} + \delta \leq x \leq x_n, \\ g(x) & \text{if } x_{i-1} + \delta < x < x_i - \delta \text{ for some } i \in \{2, \ldots, n-1\}, \\ A_i(x - x_i) + B_i & \text{if } x_i - \delta < x < x_i + \delta \text{ for some } i \in \{1, \ldots, n-1\}, \end{cases}$$

where

$$A_i = \frac{g(x_i + \delta) - g(x_i - \delta)}{2\delta}, \quad B_i = \frac{g(x_i + \delta) + g(x_i - \delta)}{2}.$$

28. (a) From Exercise 2.48, f_1 is continuous and increasing, so f is continuous and strictly increasing. (To see that f is strictly increasing, we note that $x > y$ implies that $f(x) = f_1(x) + x \geq f_1(y) + x > f_1(y) + y = f(y)$.) Since $f(0) = 0$ and $f(1) = 2$, it follows from the intermediate value theorem that f is onto, and f is one-to-one because it’s strictly increasing. Exercise 2.46 also tells us that f is a homeomorphism.

(b) Let $\langle I_n \rangle$ be the sequence of “middle third” intervals from the definition of C. Then

$$[0, 2] = f(C) \cup \bigcup_{n=1}^{\infty} f(I_n)$$

and this is a disjoint union because f is one-to-one and $C \cap I_n = I_m \cap I_n = \emptyset$ if $m \neq n$. Hence

$$2 = m(f(C)) + \sum_{n=1}^{\infty} m(f(I_n)).$$
But \(f(I_n) \) is an interval with the same length as \(I_n \) (because \(f_1 \) is constant on each of these intervals), so

\[
\sum_{n=1}^{\infty} m(f(I_n)) = \sum_{n=1}^{\infty} l(I_n) = 1.
\]

Combining the two displayed equations yields \(m(f(C)) = 1 \).

(c) Let \(P \) be a nonmeasurable subset of \(F \) (from Exercise 3.16) and set \(A = f^{-1}(P) \). Then \(A \) is a subset of \(C \) and hence measurable because \(mC = 0 \) and Lebesgue measure is complete. However, \(g^{-1}[A] = f(A) = P \) is not measurable.

(d) Take \(g = f^{-1} \) and \(h = \chi_A \). Then \((h \circ g)^{-1}(1/2, \infty) = g^{-1}(A) \) is not measurable, so \(h \circ g \) is not measurable.

(e) The set \(A \) from part (c) is measurable but it isn’t a Borel set because of Exercise 3.26.

Chapter 4

2. (a) First, from Problem 2.50(c), problem 2.51(b), and Proposition 22, it follows that \(h \) is measurable. (Actually Problem 2.50(c) is only stated for lower semicontinuous functions, but the a similar proof shows that \(h \) is upper semicontinuous if and only if the set \(\{ x : f(x) < \lambda \} \) is open for all \(\lambda \).)

Next, let \(\varphi \) be a step function such that \(\varphi \geq f \) and suppose \(a = x_0 < x_1 < \cdots < x_n = b \) is a partition such that, for each \(i \), \(\varphi \) assumes only one value in the interval \((x_i, x_{i+1}) \). We write \(\bar{\varphi} \) for the step function defined by \(\bar{\varphi}(x) = \varphi(x) \) for \(x \in (x_i, x_{i+1}) \) and \(\bar{\varphi}(x_i) \) is the maximum of \(\varphi(x_i) \) and the values assumed in \((x_{i-1}, x_i) \) and \((x_i, x_{i+1}) \). It follows that \(\bar{\varphi} \) is an upper semicontinuous step function which is greater than or equal to \(f \), so Problem 2.51(c) implies that \(\varphi \geq \bar{\varphi} \). Hence \(\varphi \geq h \) except possibly at \(x_1, \ldots, x_{n-1} \), that is, at a finite number of points. Hence

\[
\int_a^b h \leq \int_a^b \bar{\varphi} = R \int_a^b \varphi.
\]

Taking the supremum over all step functions \(\varphi \leq f \) gives us

\[
\int_a^b h \leq R \int_a^b f.
\]

From Problem 2.51(g), there is a decreasing sequence \((\varphi_n) \) of upper semicontinuous step functions which converges to \(h \). Since \(\varphi \geq f \), it follows that

\[
R \int_a^b f \leq \int_a^b \varphi_n,
\]

and sending \(n \to \infty \) gives

\[
R \int_a^b f \leq \int_a^b h.
\]
(b) Write \(h \) for the upper envelope of \(f \) and \(g \) for the lower envelope of \(f \). From part (a), we know that \(R\int_a^b f = \int_a^b h \), and a similar argument shows that \(R\int_a^b f = \int_a^b g \). Hence \(f \) is Riemann integrable if and only if \(\int_a^b h = \int_a^b g \).

If \(f \) is Riemann integrable, then \(\int_a^b h = \int_a^b g \). Now set \(k = h - g \), so \(k \) is a bounded measurable function with \(\int_a^b k = 0 \) and \(k \geq 0 \). Now let \(H = \{x : k(x) > 0\} \) and \(H_n = \{x \in H : k(x) > 1/n\} \). Then \(H = \bigcup H_n \), so \(mH \leq \sum mH_n \). Since \(\int_a^b k \geq \int_a^b (1/n) \chi_{H_n} \) (by part (iii) of Proposition 4.8) and \(0 = \int_a^b k \), it follows that

\[
0 = \int_a^b \frac{1}{n} \chi_{H_n} = \frac{1}{n} mH_n.
\]

Therefore \(mH_n = 0 \) for all \(n \), so \(k = 0 \) a.e. so \(h = g \) a.e. Problem 2.51(a) then tells us that \(f \) is continuous wherever \(h = g \) and therefore the set of points at which \(f \) is discontinuous has measure zero.

Conversely, if the set of points at which \(f \) is discontinuous has measure zero, then \(h = g \) a.e. (by part (a) of Problem 2.51), so \(\int_a^b h = \inf \int_a^b g \) and hence \(f \) is Riemann integrable.

8. We define a new sequence of functions \((g_m) \) by the expression \(g_m(x) = \inf \{f_n(x) : m \geq n\} \). Then \(g_m \) is measurable by Theorem 26, and \(\lim f_n = \lim g_m \). It follows that

\[
\int \lim f_n = \int \lim g_m \leq \lim \int g_m.
\]

But \(g_m \leq f_m \), so

\[
\int \lim f_n \leq \lim \int f_m.
\]