ERRATA

Wherever the expression $B(R,X)$ appears (or any similar expression with the radius listed before the center), it should be replaced by $B(X,R)$ (with the center listed first). Also, “Poincaré” should read “Poincaré” wherever it appears.

- page v line -13 “completely” should read “completed”.
- page 1 line -4 $[64, 65]$ should read $[67, 68]$.
- page 2 line 9 delete “with”.
- page 3 line -8 Insert $\sum_{i,j=1}^{n} a_{ij} \nu$ before a_{ij}.
- page 5 line -5 $[57]$ should read $[60]$.
- page 8 line 3 “basis” should read “basic”.
- page 10 line -2 The exponent at the end of the line should be $\alpha(R^2 - R^2)$.
- page 12 line 1 Delete the factor of $3/2$ in the definition of R_0 and replace y_0 with y_1.
- page 13 line -13 Replace R^2 by η^2.
- page 16 line 7, “Theorem 2.6” should read “Theorem 2.11”.
- page 17 line 4 Replace t_0 by t_1.
- page 18 line -8 $[130]$ should read $[131]$.
- page 25 The z’s in the integral on the left side of (3.5) should be x’s.
Lemma 3.15 should include the hypotheses \(\eta \in [0, 1] \) and \(R \leq \lambda/2 \) (instead of \(R \leq \lambda \)).

The last inequality in condition (3.16) should read

\[|f| + |Df| + |f_i| \leq F. \]

- In line -6 replace \(\eta t \) by \(2\eta t \), \(\eta R \) by \(2\eta R \), and \(R \) by \(2R \).

- In Theorem 3.16, change \(R \leq \lambda \) to \(R \leq \lambda/2 \).

- In (3.21), replace \(|Df|^2 + |f_i|^2 \) by \(|f|^2 + |Df|^2 + |f_i|^2 \).

- In (3.21)', replace \(|Df|^2 + |f_i|^2 \) by \(|f|^2 + |Df|^2 + |f_i|^2 \).

- In line -14, \(F \) should also satisfy \(\sup |F| \leq \sup |f| \).

- In line -12, replace \(|DF|^2 + |F_i|^2 \) by \(|F|^2 + |DF|^2 + |F_i|^2 \).

- In lines -11 and -8, replace \(|f_i|^2 \) by \(|f|^2 + |Df|^2 + |f_i|^2 \).

- In lines 7, 17, and -10, replace \(R \leq \lambda \) by \(R \leq \lambda/2 \).

- In line 10, replace \(R \leq \lambda \) by \(R \leq \lambda/2 \).

- In lines 11 and -2, replace \(R \leq \lambda \) by \(R \leq \lambda/2 \).

- The second inequality in line -9 should read \(|X - X_0| \geq \delta \), rather than \(|X - X_0| < \delta \).

- In line -13, replace \(R \leq \lambda \) by \(R \leq \lambda/2 \).

- In line 10, replace \(R \leq \lambda \) by \(R \leq \lambda/2 \).

- Line -9, replace “points” by “point”.

- Line -4 The correct definition of \(w_1 \) is as follows: First, let \(w_0 \) be a non-negative, continuous function in \(\mathbb{R}^{n+1} \), which agrees with \(w \) on \(\omega(t_0) \) and which vanishes only at \(x_0 \) (Such a function exists by Exercise 3.1.) Then \(w_1 \) is the solution of \(H w_1 = 0 \) in \(Q \) and \(w_1 = w_0 \) on \(\partial Q \).

- line -17 “approximationn” should read “approximation”

- line 12 [58] should read [59]

- In Exercise 3.11, the definition of a tusk should read

\[\{ X : t_0 - T < t < t_0, \left| x - x_0 \right| - (t_0 - t)^{1/2} x_1^2 < R^2(t_0 - t) \} \]

- line -2 “Corollary 4.11” should read “Corollary 4.10”

- In the definition of \((f)^{(b)} \), the supremum should be taken over all \(X \neq Y \) in \(\Omega \) with \(x = y \).

- line -13, Replace \(\varepsilon^a \) with \(\varepsilon^{1-a} \).

- line -12, Replace \((U_b/U_a)^{(1-a)/(b-a)} \) with \((U_a/U_b)^{1/(b-a)} \).

- line 5 \(q > n + 2 \) should read \(q > n + 4 \).

- line 15 (2.28) should read (2.24)

- line 10 (2.28) should read (2.24)

- line 13 The left side of this inequality should read

\[\int | Dw |^2 \, dX \]

- line 9 “coefficients” should read “coefficients”.

- line 4 5 + 4 should read 1 + 4A.

- line 6 Before “Since”, add “Now set \(x' = (x^1, \ldots, x^{n-1}, 0, t) \)”.

- line 7 should read “\(Q^+(X, 3\rho/2) \subset Q^+(X', R/2) \subset Q^+(R) \), we can use (4.34a) in \(Q^+(X', R/2) \) to infer that”

- line 8 \(Q^+(3R/4) \) should read \(Q^+(X', R/2) \)
In the proof of Lemma 4.16, the correct inequality for Lw_1 is $Lw_1 \leq 4(\alpha - 1)\alpha \lambda d_1^{\alpha - 2}$ and the correct definition for w is

$$w = \left(\frac{F}{4(1-\alpha)\alpha \lambda} + \frac{\Psi}{2\alpha \lambda} \right) w_1 + \frac{2F}{\alpha} w_2.$$

After Lemma 4.16, note that $c(\mu, \bar{\mu}) = \mu(1 - \bar{\mu}^2)^{1/2} - \bar{\mu}$, so the constant C in (4.40) depends only on a lower bound for $\bar{\mu}$.

In (4.46), add $+ |u_0|$ after Ψ.

In Exercise 4.1, “Corollary 4.11” should read “Corollary 4.10”.

In Proposition 6.14, the ball B has radius R, the factor $|B|$ should not be present in (6.18), and R^{n+p} should read R^p in line 8.
page 121 line -10 M should read kR.
page 122 line 2 $Q(R,Y)$ should read $Q(4R,Y)$.
page 126 line -8 delete the parenthesis.
page 126 line -5 “betwen” should read “between”.
page 127 line 2 should read
$$K = \exp \left(\int_{B(3R) \times \{s-4R^2\}} \eta^2 \ln \bar{u} \, dx \right),$$
page 128 The comma at the beginning of line 5 should be at the end of line 4.
page 128 line 12 “princible” should read “principle”.
page 137 line -3 “Lemma 6.37” should read “Lemma 6.36”.
page 138 line 7 “Theorem 5.17” should read “Theorem 5.18”.
page 139 line 2 $Q[2R]$ should read $\Omega[2R]$.
page 140 line -6 “costant” should read “constant”.
page 145 line 13 b should read $b\xi^2$.
page 147 line 1 Q^+ should read Q.
page 148 line -8 “Lemma 6.52” should read “Lemma 6.48”.
page 148 line -4 “Lemma 6.53” should read “Proposition 6.51”.
page 149 line 7 “Proposition 6.52” should read “Lemma 6.48”.
page 150 line 7 “[281]” should read “[282]”.
page 151 line 10 “[280]” should read “[281]”.
page 152 In Exercise 6.2, the definition of $\|u\|_{p,q}$ should read
$$\|u\|_{p,q} = \left(\int_I(\Omega) \left(\int_{\Omega(t)} |u(X)|^p \, dx \right)^{q/p} \right)^{1/q}.$$
the integrand in the second integral should read
\[\left| f(X) - \frac{1}{|K_m|} \int_{K_m} f(X + Y + \rho_m(X)) dY \right| \]

line 4 \(f(x) \) should read \(f(X) \).

line 6 \(|K_1|^{1-1/p} \) should read \(|K_1|^{(1/p) - 1} \).

line 7 \(|K'_1|^{-p} \) should read \(|K'_1|^{1-p} \).

line 2 "Theorem 6.3" should read "Theorem 6.6".

In Theorem 7.15, \(\Omega' \) must be a subset of \(\Omega \) in addition to all the other hypotheses.

line 15 "Theorem 5.16" should read "Theorem 5.15".

line -10 "modification" should read "modification".

line -7 "Proposition 7.10" should read "Proposition 7.14".

line 3 \(p - 1 \) should read \(1 - p \).

line 4 \(p - 1 \) should read \(1 - p \).

line 7 "\(dx^n \)" should read "\(dX \)".

Condition (7.37a)' should be included in condition (7.37a).

In the statement of Theorem 7.21, \(C \) is determined also by \(\rho \) and \(\lambda_1 \).

The exponent of \(R \) on the right side of inequality (7.39) should be \(-n - 2 \).

In the proof of Lemma 7.23, \(v \) and \(Q^* \) should have \(R \) replaced by \(r \).

In the proof of Lemma 7.23, the expression of \(Lv \) should have \(R \) replaced by \(r \) and \(Q(R/2) \) should read \(Q(r/2) \). Also, the estimate on \(Lv \) should read
\[r^{n/(n+1)} \|Lv/\mathcal{D}^*\|_{n+1,Q^*} \leq Ck + C\|\xi^{1/(n+1)} + \beta_0\|h. \]

In Lemma 7.24, \(\beta_1 \) is independent of \(\lambda_0 \), the constants depend also on \(\theta \), and the inequality \(B_r^{n/(n+1)} \leq \beta_1 \) should read \(B_r^\theta \leq \beta_0 \).

In (7.43), replace \(s \) with \(x \).

In fact, \(\psi \) is only \(C^{2,1} \) on the subset of \(\mathbb{R}^{n+1} \) on which \(t > -(1 + (\alpha - 1)\varepsilon^2)/(1 - \varepsilon^2) \), which is true for \(X \in Q \).
line -1 should read
\[L_0 \psi = \psi^{-q}[8 \alpha^3 x^3 \psi - \psi_1 4T + \frac{(1 - \varepsilon^2)q}{\alpha \psi_0} \psi_1^2 + \frac{2 - \varepsilon^2}{\alpha} \psi_1], \]

page 183
Replace \(\Lambda \) by \(\lambda \) everywhere.
The estimate for \(L \psi \) should read
\[L \psi \geq b_i D_i \psi = -4 \psi_1 \psi_0^{-q} b \cdot x \geq -4 |b| r (\varepsilon r)^{2-2q}. \]
Condition (7.44b) should read
\[\psi(x, (\alpha - 1)r^2) = (r^2 - |x|^2)r^{-2q} \geq \frac{9 - 2q + 4}{r^2}. \]
if \(|x| \leq r/2. \)
In the last paragraph of the proof of Lemma 7.24, the second to last sentence should read "Applying Theorem 7.1 to then yields \(v \geq -Ck - C\beta_1 A\gamma^{-2} \)
in \(Q \) and hence
\[u \geq A[(\varepsilon r)^{3-2q} - C\beta_1 / \varepsilon^2] - Ck \geq A \frac{2q-4}{2} - Ck \]
for \(|x| \leq r/2 \) and \(t = (\alpha - 1)r^2 \) by (7.44b) provided \(\beta_1 \) is small enough."
line -3 \(R \) should read \(r. \)
page 184
The reference to (7.53c) should be (7.45c).
page 185
line 2 \("R^{m/(n+1)n} \) should read \("R^{m/(n+1)n} \).
line 11 \("R^{n/(n+1)n} \) should read \("R^{m/(n+1)n} \).
page 187
In the statement of Theorem 7.29, condition (7.37) should be condition (7.37a).
In inequality (7.51), \(\Omega(r) \) should be \(\Omega[r] \).
line 3 "B" should read "BR^{m/(n+1)n}", and \(C \) and \(\alpha \) depend also on \(\theta. \)
lines 4 and 5 "r" should read "R".
In estimate (7.53), the constant 8 should be \(8/\delta \).
line 7 "t = -r^2" should read \(t = -4r^2. \)
The second to last sentence in the proof of Lemma 7.31 should read "Since \(w_1 \leq 3x^n \) in \(G(\rho, r) \), it follows that \(u \geq [A/4-(2/\delta)F_1(\rho \delta)] x^n \) in \(G(\rho, r). \)"
page 190
In equation (7.57) \(Q \) should read \(Q^+. \)
line 6 \(Q \) should read \(Q^+. \)
page 193
line 13 "Lemma 7.5" should read "Lemma 7.6."
line 20 "Theorem 7.19" should read "Lemma 7.19."
page 194
line 7 "degenerate" should read "degenerate."
line 17 "Lemma 7.33" should read "Lemma 7.32."
line 18 "Apushkinaskaya" should read "Apushkinskaya."
line 19 "Apushkinaskaya" should read "Apushkinskaya."
page 195
line 4 "Lemma 7.33" should read "Lemma 7.32."
page 202
line 6 "solvability" should read "solvability."
page 205
line 11 \(v \) should read \(v_0. \)
line 14 "mostly" should read "most."
line 17 "Lemma 4.2" should read "Proposition 4.2."
page 209
line 18 "verification" should read "verification."
page 211
line 5 "effect" should read "effect."
line 5 add the sentence "Another approach, similar to that described in Exercise 5.4, was laid out in [132, 133] for solutions of the Cauchy problem."
In the statement of Theorem 9.1, “increasing positive constant k such that $a(X, z, p) + k(M)z$” should read “increasing positive function k such that $a(X, z, p) - k(M)z$”.

In the statement of Exercise 9.3, the conclusion should read:

$$\sup_{\Omega} u \leq \max\{M, \sup_{\mathcal{P}\Omega} u^+\} + 2LR.$$

The list of references should include [151] and [152].
page 256 line -11 “replce” should read “replace”.
page 259 line -13 should read

\[4\sigma \leq \left(\frac{2|A_{\infty}|}{(K^0\sigma)^2} + \frac{1}{(K^0\sigma)^2} \right)^{-1/2} \]

page 262 line -7 “elliptic” should read “parabolic”.
page 265 line -7 should read

\[\int_{0}^{R} \rho^{-n}\tilde{\psi}(\rho) \, d\rho < 2 \frac{4^n R}{\int_{0}^{R} \rho^{-n}\tilde{\phi}(4\rho) \, d\rho} \leq \frac{S}{2} + \frac{1}{2R} \int_{R}^{\infty} s^{-n}\tilde{\varphi}(s) \, ds. \]

line -3 should read

\[S \leq 2\omega_n \left(2^{-n} + \frac{1}{2^n(n-1)} \right) \leq \omega_n. \]

page 267 line -11 (7.14) should read (7.10).
line -7 “Corollary 6.7” should read “Corollary 6.10”.
page 268 line 3 “illustrate” should read “illustrate”.
line -9 “Theorem 11.4” should read “Theorem 11.1”.
page 269 In line 6, A_1^s should be multiplied by p_k.
page 270 In (11.44), there is a missing factor v in the term $|\zeta\zeta_t|$ and a missing factor of ζ^2 in the term $\beta^2_1A_0$.
page 271 line 7 The factor v multiplying E_1 should be $v[\chi + (v - \tau)^+\chi']$.
lines 7, 8, 9 The integrands in these four integrals are all missing a factor of ζ^2.
line 10 There should be an additional term of

\[2 \int_{\Omega(s)} v^2 |\zeta\zeta_t| \chi \, dX. \]

page 272 line -9 The term in square brackets should read $9\mu|D\zeta|^2 v + 2|\zeta\zeta_t| v^2$.
In condition (11.45b), “increasing” should read “decreasing”.
The integrals in (11.48) and (11.49) should both be multiplied by an additional factor of ρ^{-n-2}, and the exponents $-N - 2$ should read $N + 2$.
Add to the hypotheses of Lemma 11.11

\[\lambda \leq \Lambda \]

page 273 line 2 Delete the first factor of v in the integrand.
line -9 should read

\[|\delta h|^2 \leq C(n, \beta)\eta\chi[\mathcal{E}_1\zeta^{(N+2)\eta-N} + \rho^{-2}\lambda v\zeta^{(N+2)(\eta-1)}] \]

line -6, w^{2q} should read w^q.
page 274 line 11 “managable” should read “manageable”.
page 279 line 11 “Lemma 4.25” should read “Lemma 4.24”.
page 280 line -5 $\alpha + 2$ should read $\alpha + 1$.
page 281 line 3 “kown” should read “known”.
page 282 line -13 “Although” should read “Although”.
line -3 b_0 should read b_1.
page 283 In (11.62) and in line 9, the factor of 2 can be removed.
In (11.66), the factor of 2 can be removed.
page 284 In lines 9 and 11, the factor of 2 can be removed.
inequality (11.67) should read
\[|u_x| \leq \exp(4\beta_0 M) (L_0 + \beta_1 + 4M/r) \]
line -1 The term \(\beta_2[x - y]\) should not be present in the definition of \(v^\pm\).

page 285
line 2 The correct expression for \(b_1\) is \(\beta_1 + 4M/r\).
Equation (11.69) only holds in \(Q(r)\).
line -10 “Section 4” should read “Section 5”.

page 286
line -11 \(C_{ij}^k\) should read \(c_{ij}^k\), \(b_i\) should read \(\overline{b}_i\).
line -8 \(a_{ijr}\) should read \(\overline{a}_{ijm}\), \(b_i\) should read \(\overline{b}_i\), there is a missing term of \(c_{ij}^k D_{ij} w^k\) inside the square brackets.

page 289
line 1 after the first sentence, add “In addition, Krylov [140, 141] has developed an alternative method for proving gradient bounds, which also applies to a large class of degenerate, fully nonlinear equations.”

page 290
In Exercise 11.2, the estimate
\[|u(X) - u(Y)| \leq L_0 |X - Y| \]
only needs to be satisfied for \(X \in \Omega\) and \(Y \in \mathcal{P}\Omega\).

page 291
In Exercise 11.6, “Lemma 11.15” should read “Lemma 11.10”.
In Exercise 11.7, “Lemma 11.16” should read “Lemma 11.11”.
In Exercise 11.8, \(a_1\) should satisfy (11.64).

page 294
lines 17 and -4 \(dist(\Omega, \mathcal{P}\Omega)\) should read \(dist(\Omega', \mathcal{P}\Omega)\).

page 295
line -7 should read
\[-w_t^\pm + D_i (a^{ij} D_j w^\pm + f_i^k) + a^{ijm} D_m w^\pm\]
line -5 The expression for \(f_i^k\) should read \(a [\delta^k_i + 2\epsilon D_i u]\).

page 299
In inequality (12.14), “\(F_0\)” should read “\(F_0 + [D\varphi]_\beta\)”, and the proof of Lemma 12.6 should be modified as follows: First, in the definition of \(\tilde{Q}(\rho)\), \(R^2\) should read \(\rho^2\). Then take
\[w = 2F_0 w_1 + \left(\frac{M(R)}{R^{1+\beta}} + [D\varphi]_\beta \right) (w_2)^{(1+\beta)/2}. \]
It follows that \(w \geq \pm v\) in \(\tilde{Q}(R)\), so
\[M(r) \leq 2F_0 \left(\frac{r}{(1 + 2\Lambda)^{1/2}} \right)^{1+\beta} + \left(\frac{M(R)}{R^{1+\beta}} + [D\varphi]_\beta \right) 2r^{1+\beta}. \]
From this inequality, the proof is completed as written.

page 301
line 5, \(t^{(\beta-1)/2, \lambda|\varphi|^\beta-1}\) should read \(t^{(\beta-1)/2, \lambda|\varphi|^{\beta-1}}\).
In condition (12.14)’, \(F_0\) should read \(F_0 + [D\varphi]_\beta + \langle \varphi \rangle (1+\beta)/2\), and the proof of Lemma 12.8 should be modified by setting \(F_1 = [D\varphi]_\beta + \langle \varphi \rangle (1+\beta)/2\) and taking
\[w = 2F_0 w_3 + \left(\frac{M(R)}{R^{1+\beta}} + F_1 \right) (w_2)^{(1+\beta)/2}. \]
Then we have
\[M(r) \leq 2 \left(F_0 \frac{M(R)}{R^{1+\beta}} + F_1 \right) r^{1+\beta}, \]
which implies (12.14)’.

page 303
line 3 “inequalites” should read “inequalities”.

page 306
The section number is 6, not 5.
page 307
line 11 “replaced” should read “relaxed”.
line 14 (12.24a) should read (12.25a)
(12.26) should read
\[z_a(X, z, 0) \leq b_1|z|^2 + k. \]

page 308
line 8 $|Du|$ should read $|Du|^2$.
line -14 “Dirchlet” should read “Dirichlet”.
line -3 add after “...x and z” the phrase “with $zH(X, z) \leq k|z|^2 + b_1$ for some nonnegative constants k and b_1.”

page 309
line -2 after the word “If” add “there are nonnegative constants b_0, b_1, and M such that”

page 310
In (12.32) η/R should read $|p|\eta/(2R_1)$.
Add the hypotheses (12.26) and “a^{ij} is continuously differentiable” to Theorem 12.21.

page 311
Add the hypotheses (12.6) and “$a^{11} \in H_a(K)$ for any compact subset K of $\overline{U} \times \mathbb{R} \times \mathbb{R}$” to Theorem 12.25.

page 312
line 3 “fuction” should read “function”.
condition (13.3a) should read
\[\text{sgn} z_b(X, z, -\text{sgn} z M_1) < 0 \]

page 320
line -4 “arbitrary” should read “arbitrary”.

page 322
line 14 “auxiliary” should read “auxiliary”.

page 327
In (13.22c), Λ_0 should be replaced by $\Lambda_0(|p|/C(c_0))$, where
\[c_0 = \left(1 - \frac{(1 - \beta_2)^2}{1 - (1 - \beta_2)^2 + (\beta_2 + \beta_3)^2} \right)^{1/2}, \]
and $C(c_0)$ is the constant from (13.15).

page 328
In (13.26c), the power of $|p|$ should be one.
In (13.26d), the left side of the inequality should be $\varepsilon_1 C_i^k p_i \xi^k$.
An additional hypothesis is needed here:
\[\varepsilon_1 v |p \cdot A_z + a^i + B| \leq \beta_2^2 \Lambda_0. \]
(13.27d)

page 329
In inequality (13.31), the second integral is missing a dt.
In the first equation after (13.31), the term $v^{-1}A^{ij}D_{jk}D_{ki}ua_0$ should read $v^{-1}A^{ij}D_{jk}D_{ki}ua^k_0$, and the term $a^k_0 C_i^k D_{ki} u$ should read $a^k_0 C_i^k D_{ki} u \theta$.

page 330
In line 4, (13.22a) should read (13.22a).
The second and third displays should be interchanged, and a_0 should read a_0^k.
The last two integrals on this page are missing a factor of v_1 in the integrands.

page 331
line 4 dX should read dx in the first integral on the right hand side and $v - 1$ should read v_1
On lines 11 and 12, the second and third integrals are missing a dt.
In the estimate of $\eta \tilde{b} \tilde{b}_z u_1 (1 - \frac{1}{v_1}) \chi \zeta^2$, we must invoke (13.27d).
The estimate for the term involving \bar{b}_t should read
\[\eta \bar{b}_t(1 - \frac{\tau}{v_1})\chi \zeta^2 \leq C \beta^2 \Lambda_0 \chi \zeta^2 v. \]

page 332
In (13.35c), $\xi_t \xi_j$ should read $\zeta_{ik} \zeta_{jk}$.
In (13.39), the second integral should be over $\Omega(\tau, 2\rho)$.
On line -5, the definition of I_b should read $I_b = \int_0^T I_0(t) \, dt$.
On lines -4, -2, and -1, replace $d\sigma$ by ds.

page 333
Line 2 delete the second “we”.
In lines 4, 6, 12, and 13, the factor of τ in front of the integrals should be deleted.

page 334
Line 1 “Suppose” should read “Suppose”.
In example (i), we need $\psi \equiv 0$ and $\varepsilon_1 \equiv 0$ (so $\Psi_1 = 0$).

page 335
line 10 The set of integration should be $\Omega \cap \{|x - x_0| < 2\rho, \ v_1 \geq \tau\}$.

page 336
The correct structure functions in example (ii) are
\[\Lambda_0 = K v_1^3, \ \Lambda = K v_1^2, \ \lambda \equiv \min\{1, \theta_0\}. \]

line 9 (13.23) should read (13.33).

page 341
Line -15 “initial” should read “initial”.
Delete condition (13.49).
Theorem 13.16 needs two additional hypotheses. First,
\[|A(x, t, z, p) - A(x, s, z, p)| + |\psi(x, t, z) - \psi(x, s, z)| \leq \mu_K |t - s|^{1/2} \]
for all $(x, z, p) \in \partial \omega \times \mathbb{R} \times \mathbb{R}^n$ with $|z| + |p| \leq K$ and all s and t in $(0, T)$.
Second, $\varphi \in H_2$. Consequently, C in the conclusion also depends on $|\varphi|_2$.

line 11 $\Sigma_0(\mathbb{R})$ should read $\Sigma_0^0(\mathbb{R})$.
line -2 “quantities” should read “quantities”.

page 342
In estimate (13.58) and in the following line, Dv should read Du.

page 343
line -12 The word “continuous” is misspelled.

page 349
lines 6 and 7: Replace Q^+ and Q^0 by Σ^+ and Σ^0.
line 8 Replace $a^{ij}(X_0, Du)$ by $a^{ij}(X_0, Dv)$.
line 11 Replace “Proposition 13.20” by “Lemma 13.21”.

page 351
line 12 “(13.44a,b)” should read “(13.44a,b)”.

page 352
line 2 [65, 66, 67] should read [64, 65, 66].
line 10 add reference [263] to the list.

page 353
line 2 [185] should read [186].
line 14 “satisfies” should read “satisfies”.
line -1 [171] should read [172].

page 361
line 14 “auxiliary” should read “auxiliary”.
line-4 “L’” should read “L”.

page 362
line -13 “satisfy” should read “satisfy”.

page 365
line 11 “auxiliary” should read “auxiliary”.
line -6 The reference to equation (14.17) should be to (14.15).

page 366
line 11 $b - 2$ should read b_2.

page 367
line 11 “eigenevalues” should read “eigenvalues”.
line -15 “abitary” should read “arbitrary”.

page 369
line -8 “Lemma 11.3” should read “Lemma 11.4”.

page 372
lines 1, 2, 7 Replace δ by θ.
line 8 “Theorem 14.2” should read “Corollary 14.2”.
line 12 $a_n u$ should read $a_n \nu$.
line 18 $|a^i_{\nu,\rho}|$ should read $|\sigma^i_{\nu,\rho}|$.
line -14 “weaking” should read “weakening”.

page 375
line 1 “14.11” should read “14.12”.

page 377
line 10 “Lemma 7.35” should read “Lemma 7.32”.

page 378
line 15 should read
$$|Du - Du(0)| \leq |u|_2 K^\alpha R^{1+\alpha}$$
line 16 $R^{\alpha \epsilon}$ should read $R^{2+\alpha \epsilon}$

page 379
line 16 “Theorems 14.17” should read “Lemma 14.17”.

page 380
line 8 [137] should read [136].

page 384
line 12 “symmetrical” should read “symmetric”.

page 386
line 6 “$u = \varphi$ on $P\Omega$” should read “$u = \varphi$ on $S\Omega$ and $u \leq \varphi$ on $B\Omega$”.
line 8 This sentence should read “To state them, we use $\kappa = (\kappa_0, \ldots, \kappa_{n-1})$ to denote the space-time curvature of $\partial \Omega$ as defined in Section 10.3.”
line 11 (15.4a–c) should read (15.4a–d).
line 12 “nonnegative” should read “nonnegative”.

page 387
line 6 “then Theorem 14.1 implies that $\bar{u} \leq u \leq \bar{u}$.” should read “then Theorem 2.4 gives $u \leq \bar{u}$.”

line 7 The expression in square brackets should read $\frac{1}{2} |x|^2 - t$.
line -11 should read
$$L(u - \bar{u}) \leq c_1 |u - \bar{u}| - \bar{c}_1 [F_\gamma + \sum_i F^{ij}] - \delta_0 + \sigma(\bar{c}_1).$$

page 394
line -6 $\nu = u - \bar{u}$ should read $v = u - \bar{u}$.

page 395
lines 6 and 7 should read “Since $D_\gamma v(X_0) \leq 0$, it follows that $G_0 D_\gamma v(X_0) \geq \delta_0/2 > 0$, so $G_0 < 0$, $D_\gamma v(X_0) < 0$, and
$$G_0 \leq \frac{\delta_0}{2D_\gamma v(X_0)}$$."

page 396
lines 17 through 20 should read
“$L_1(w + \frac{\mu_4}{\bar{c}}(u - \bar{u})) \leq 0$”

wherever $w < 0$ and therefore
$$-u_4 \geq -\frac{\mu_4}{\bar{c}} \sup(u - \bar{u}) - \sup_{P\Omega} (-u_4).$$
Since $-u_4 + \Delta u > 0$ on $P\Omega$, it follows that
$$-u_4 \geq C \text{ on } P\Omega,$$
and this estimate will be needed to give a global bound on the second spatial derivatives.”

line -3 ζ^m should read ξ^m.

page 397
line 12 “upper” should read “lower”.

page 400
line 4 “roots” should read “roots”.

page 402
line 1 The range for j should be $1 \leq j < k$.
line 2 $S_{0,i}$ should read $S_{1,k}$.
line 3 $j = 0$ should read $j = 1$.

page 404
(15.b) should read (15.4b).

page 405
line 15 “corresponding” should read “corresponding”.

page 409
line 9 delete “assume”.
line 12 “calculation” should read “calculation”.

page 414
line 17 “essential” should read “essential”.

page 415
line 11 “Exercise 15.6” should read “Exercise 15.5”.
line 17 after [271], add “and Wang and Wang [273]”.

page 416
line 2 [272] should read [273].
line -15 “[28]” should read “[30]”.
line -13 “form” should read “from”.

page 419

page 420

page 421
In Reference [31] “Calderón” should read “Calderón”.
In Reference [32] “properties” should read “properties” and “Calderon” should read “Calderón”.
In Reference [39] “de” should read “di”.
In Reference [39] “essistenza” should read “esistenza”.

page 422
The page numbers for Reference [61] are 458–520.
In Reference [64] “oblique” should read “obliqua”.
In Reference [64] “ellitiche” should read “ellittiche”.
In Reference [65] “dalle” should read “della”.
In Reference [65] “oblique” should read “obliqua”.
In Reference [66] “ellitiche” should read “ellittiche”.
In Reference [66] “oblique” should read “obliqua”.

page 423
In Reference [77] “divergence” should read “divergence”.
In Reference [79], “poblems” should read “problems”.

page 424
In Reference [95], “solvability” should read “solvability”.
In Reference [98], the page numbers for the Russian article are 193–206.

page 425
Reference [101], “Izv.” should read “Sb.”

page 427
In Reference [139] replace “yr” with a comma.

page 428
In Reference [152] add “(Russian)” after 161–240.

page 432

page 434
In Reference [239] “sufrace” should read “surface”.

page 436
In Reference [280], “Q-growth” should read “Q-minima”.
Reference [281] has appeared in volume 10 (1997), 31–44.

Also add the following references:
References
