
STAT 511 Solutions to Assignment 3 Spring 2002

1.(a) Since A is nonnegative de�nite (semipositive de�nite) matrix, we know by de�nition that

y
�

TAy
�

� 0 for any vector y
�

:

For any vector z
�

, let y
�

= P z
�

. Then,

z
�

TP TAP z
�

= (P z
�

)TA (P z
�

) = y
�

TAy
�

� 0 for any vector z
�

:

Consequently, P TAP satis�es the de�nition of a nonnegative de�nite matrix.
This result holds even when P is a singualr matrix.

(b) For this result, we will make use of the condition that P is a nonsingular matrix. Since A is a postive de�nite
matrix, we have by de�nition that y

�

TAy
�

> 0 for every y
�

6= 0. For any vector z
�

, let y
�

= P z
�

. Then,

z
�

TP TAP z
�

= (P z
�

)TA (P z
�

) = y
�

TAy
�

> 0 for every vector y
�

= P z
�

6= 0:

Since P is nonsingular, the columns of P are linearly independent and y
�

= P z
�

= 0 only if z
�

= 0. Consequently,P TAP

satis�es the de�nition of a positive de�nite matrix.

2.(a) For B to satisfy the de�nition of a generalized inverse of A, we must have ABA = A. Although this simple
example could be done by hand, to review some Splus we can do the following:

> b <- matrix(c(1,0,0,0),ncol=4)

> a <- matrix(c(1,2,5,-2),ncol=1)

> a %*% b %*% a

[,1]

[1,] 1

[2,] 2

[3,] 5

[4,] -2

(b) Two other generalized inverses for A are the following

G1 =
�
0 1

2
0 0

�
, G2 =

�
0 0 1

5
0
�
. Check in each case that AGiA = A.

3.(a) and (b) By the de�nition of an eigenvector, x
�

is an eigenvector for I � x
�

(x
�

T x
�

)�1x
�

T if there is a scalar � such

that

(I � x
�

(x
�

T x
�

)�1x
�

T )x
�

= �x
�

Note that

I � x
�

(x
�

T x
�

)�1x
�

T )x
�

= (x
�

� x
�

(x
�

T x
�

)�1(x
�

T x
�

) = x
�

� x
�

= 0
�

Consequently, x
�

is an eigenvector of (I � x
�

(x
�

T x
�

)�1x
�

T ) corresponding to the eigenvalue � = 0.

(c) Since x
�

T u
�

= 0; we have (I � x
�

(x
�

T x
�

)�1x
�

T )u
�

= u
�

:

Therefore, u
�

is an eigenvector of (I � x
�

(x
�

T x
�

)�1x
�

T ) corresponding to an eigenvalue of � = 1.
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(d) From part (b) the eigenvalue associated with x
�

is 0. Furthermore, x
�

is the basis for a one dimensional space

(a line). The space orthogonal to x
�

has dimension n � 1 and we can �nd a set of vectors u
�1
, . . .,u

�n�1

that provide a basis for that space, are orthogonal to each other and are also orthogonal to x
�

. Each of these

vectors corresponds to and eigenvalue of 1. Hence, I�x
�

(x
�

T x
�

)�1x
�

T has one zero eigenvalue and the other n�1

eigenvalues are all 1. Furthermore,

rank(I � x
�

(x
�

T x
�

)�1x
�

T ) = n� 1;

the number of non-zero eigenvalues.

5.) Since A is an n� n symmetric matrix with rank(A) = r, we can use the spectral decomposition to write A as

A
n�n

= L
n�n

2
64

�r 0
r�(n�r)

0
(n�r)�r

0
(n�r)�(n�r)

3
75 LT
n�n

=
h
L1
n�r

L2
p�(n�r)

i
2
64

�r 0
r�(n�r)

0
(n�r)�r

0
(n�r)�(n�r)

3
75
2
64

LT1
r�n

LT2
(n�r)�n

3
75

= L1
n�r

�rL
T
1

r�n

Note that
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Now show that the four properties of the Moore-Penrose inverse are satis�ed.

(i) AGA = A.

AGA =

�
L1
n�r

�rL
T
1

r�n

��
L1
n�r

��1
r LT1

r�n

��
L1
n�r

�rL
T
1

r�n

�

= L1
n�r

�r

�
LT1
r�n

L1
n�r

�
��1
r

�
LT1
r�n

L1
n�r

�
�rL

T
1

r�n

= L1
n�r

�r�
�1
r �rL

T
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since LT1 L1 = Ir and L
T
1 L1 = Ir:

= L1
n�r

�rL
T
1

r�n

since �r�
�1
r = Ir:

= A

(ii) GAG = G. The proof is similar to (i).
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(iii) AG is symmetric. i.e. (AG)T = AG.

AG =

�
L1
n�r

�rL
T
1

r�n

��
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n�r

��1
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r�n

�
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�
��1
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n�r

�r�
�1
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r�n

since LT1 L1 = Ir:

= L1
n�r

LT1
r�n

since �r�
�1
r = Ir:

Then (1)

(AG)T =

�
L1
n�r

LT1
r�n

�T

= (LT1
r�n

)T (L1
n�r

)T = L1
n�r

LT1
r�n

= AG :

(iv) GA is symmetric. i.e. (GA)T = GA. The proof is similar to (iii).

5.(a) > V <- matrix(c(3,-1,1,-1,5,-1,1,-1,3),ncol=3,byrow=T)

> V

[,1] [,2] [,3]

[1,] 3 -1 1

[2,] -1 5 -1

[3,] 1 -1 3

> eigen(V)

$values:

[1] 6 3 2

$vectors:

[,1] [,2] [,3]

[1,] 0.4082483 0.5773503 7.071068e-001

[2,] -0.8164966 0.5773503 3.764350e-016

[3,] 0.4082483 0.5773503 -7.071068e-001

(b) > ##########################################################

> # Function: spectral

> # input: V = Symmetric matrix

> # p = Power(e.g. -1 -> inverse matrix

> # -1/2 -> inv. squart root matrix

> # output: inverse or inverse square root matrix

> ##########################################################

> spectral <- function(V,p)

+ {

+ eigen.V <- eigen(V)

+ eval <- eigen.V$values

+ evec <- eigen.V$vectors

+ spec.V <- evec %*% diag(eval^p) %*% t(evec)

+ return(spec.V)

+ }

(c) > VV <- spectral(V,-1/2)

> VV

[,1] [,2] [,3]

[1,] 0.61404486 0.05636733 -0.09306192

[2,] 0.05636733 0.46461562 0.05636733

[3,] -0.09306192 0.05636733 0.61404486

# The following should be an identity matrix

> VV %*% V %*% VV
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[,1] [,2] [,3]

[1,] 1.000000e+000 -1.943094e-018 8.010899e-017

[2,] 1.100126e-017 1.000000e+000 -3.498043e-016

[3,] 1.587679e-016 -3.041323e-016 1.000000e+000

(d) V �1=2 = UD�1=2UT , where U =

�
u1
�

u2
�

u3
�

�
and D =

2
4�1 �2

�3

3
5.

Then, for Z
�

= V �1=2Y
�

we have

E(Z
�

) = E(A�
1

2Y
�

) = V �
1

2E(Y
�

) = V �
1

2 0
�

= 0
�

Var(Z
�

) = Var(V �
1

2Y
�

) = V �
1

2Var(Y
�

)[V �
1

2 ]T = V �
1

2 V V �
1

2 = I

6.(a) Let b = (XTX)�XTY for some generalized inverse (XTX)� of XTX . Then XTXb = XTX(XTX)�XTY =
XTY because X(XTX)�XTX = PXX = X . (Some students based their argument on an incorrect claim that
PXY = Y .)

(b) The answer to the �rst question is yes if X has full column rank. The answer is no if X does not have full
column rank. Let b� = (XTX)�XTY + a for some generalized inverse (XTX)� of XTX . Then, XTXb� =
XTX(XTX)�XTY +XTXa = XTY +XTXa. This is a solution to the normal equations if XTXa = 0. If
X does not have full column rank, the columns of X are linearly dependent and there is at least one a 6= 0 for
which Xa = 0. Consequently, XTXa = 0 for that a. If X has full column rank, then XTX is a non-singular
matrix and there is no a 6= 0 for which XTXa = 0. (Some students failed to provide a correct derivation and
wrongly argued that XTXa = 0 only if XTX is a matrix of zeros. Note that the diagonal elements of XTX

are sums of the squared elements in the columns of X which could not be zeros unless X is a matrix of zeros.)

(c) It is easy to show that b = (XTX)�1XTY is a solution to the normal equations. Suppose there exits another
solution to the normal equations, let's say b�. We can write b� = b+ a = (XTX)�1XTY + a, for some a 6= 0.
Since, rank(XTX)=rank(X) and X has full column rank, XTX also has full column rank and the columns of
XTX are linearly independent. Therefore, it is impossible to have XTXa = 0, for some a 6= 0. Consequently,
b = (XTX)�1XTY is the unique solution to the normal equations.

7.(a)

# Enter the data into a data frame.

>biomass <- read.table("c:/st511/biomass.txt",header=T)

>biomass

# Compute correlations and round the results

# to four significant digits

> round(cor(biomass[-(1:2)]),4)

# Create a scatterplot matrix

> splom(~biomass[,3:8],aspect="fill")

# Create a scatterplot matrix with smooth

# curves. Unix users should first use motif( )

# to open a graphics wundow

points.lines <- function(x, y)

{
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points(x, y)

lines(loess.smooth(x, y, 0.90))

}

par(din=c(7,7), pch=18, mkh=.15, cex=1.2, lwd=3)

pairs(biomass[ ,-(1:2)], panel=points.lines)

biomass

24 28 32 36 400 800 1200 0 5 10 20 30

50
0

15
00

25
00

24
28

32
36

salinity

pH

4
5

6
7

40
0

80
0

14
00

K

Na

10
00

0
25

00
0

500 1500 2500

0
10

20
30

4 5 6 7 10000 25000

Zn

There seems to be a positive linear relationship between Y and pH and a negative linear relationship between
Y and Zn. The other three variables appear to be at more weakly correlated with the response Y , but Y seems
to be lower for larger values of K and Na. With the exception of one potentially in
uencial case, it appears
that K and Na have a strong positive correlation. There appears to be a negative association between levels
of pH and Zn in the soil.

(b) The model matrix has full column rank.

# Construct the response vector and model matrix

> Y<-as.matrix(biomass[ ,3])

> X<-as.matrix(biomass[,4:8])

> X0 <- rep(1, length(Y))

> X<-cbind(X0,X)

# Check the rank of the model matrix

> qr(X)$rank

[1] 6
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(c) > b <- solve(t(X)%*%X) %*% t(X) %*% Y

> b

[,1]

X0 1.252455e+003

salinity -3.028491e+001

pH 3.054880e+002

K -2.852645e-001

Na -8.665809e-003

Zn -2.067677e+001

(d) > yhat <- X %*% b

> yhat

[,1]

1 724.1509

2 739.6501

3 690.9358

4 814.6608

5 1063.5814

6 957.8484

7 527.0257

.

.

.

42 1297.8306

43 1401.3330

44 1305.8814

45 1265.4053

> e <- Y - yhat

> e

[,1]

1 -48.150889

2 -223.650127

3 361.064216

4 53.339248

5 -55.581358

6 -521.848358

7 16.974252

.

.

.

42 -65.830647

43 -1.332987

44 314.118581

45 294.594716

The motif( ) function shown below opens a graphics window on UNIX workstations. It should not be used in
a Windows version of S-PLUS.

> motif()

# Plot residuals against fitted values #

# Specify plotting symbol and size of graph in inches.

# fin=c(w,h) specifies a plot that is w inches wide

# and h inches high, not including labels

# pch=18 requests a filled diamond as a plotting

# symbol

# mkh=b requests plotting symbols that are b

# inches high

# cex=c requests that the size of characters used to print

# labels are c times the default for the printer
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# mar mar=c(5,5,4,2) defines the number of lines of

# text allowed on each side of the figure,

# starting on the bottom and moving clockwise.

> par(fin=c(8.0,8.0),pch=18,mkh=.1,cex=1.3,mar=c(5,5,4,2))

> plot(yhat,e,xlab="Predicted Values",

ylab="Residuals", main="Residual Plot")

Residual Plot
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To some students this plot
sugested that the assumption of constant variance does not hold. It is diÆcult to tell because there are only a
few points on the right side of the plot. Another possibility is that the speci�ed regression model is not a good
approximation to the true model..

(e) > plot(biomass$salinity,e,

+ xlab="Salinity",ylab="Residuals",main="Residual Plot")

> lines(loess.smooth(biomass$salinity, e, 0.90))
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Residual Plot
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> plot(biomass$pH,e,

+ xlab="pH",ylab="Residuals",main="Residual Plot")

> lines(loess.smooth(biomass$pH, e, 0.90))

Residual Plot
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> plot(biomass$K,e,

+ xlab="Potassium",ylab="Residuals",main="Residual Plot")

> lines(loess.smooth(biomass$K, e, 0.90))
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Residual Plot

Potassium
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> plot(biomass$Na,e,

+ xlab="Sodium",ylab="Residuals",main="Residual Plot")

> lines(loess.smooth(biomass$Na, e, 0.90))
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> plot(biomass$Zn,e,

+ xlab="Zinc",ylab="Residuals",main="Residual Plot")

> lines(loess.smooth(biomass$Zn, e, 0.90))
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Residual Plot
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Based on the respective plots, the variance does not appear to be constant with respect to some of the explana-
tory variables, supporting our conclusion in part(d). There may be a curved e�ect of some of the variables on
the mean response.
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(f) > qqnorm(e, main="Normal Probability Plot")

> qqline(e)

Normal Probability Plot

Quantiles of Standard Normal
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Based on this plot, the distribution of the random errors appears to be skewed to the right. This could be a
result of non-homogeneous error variances or failure to incorporate curved relationships into the model.

(g) > SSE <- crossprod(e,e)

> SSE

[,1]

[1,] 6186015

> MSE <- SSE/(length(Y)-length(b))

> MSE

[,1]

[1,] 158615.8

(h) > Covb <- as.vector(MSE)*solve(t(X)%*%X)

> Covb

X0 salinity pH

X0 1524509.10834 -27237.9322767 -91209.1728455

salinity -27237.93227 577.4385457 1276.4382277

pH -91209.17286 1276.4382280 7723.0703457

K -134.26839 2.5498036 3.7084102

Na 7.40833 -0.1655202 -0.3417675

Zn -16373.54466 257.3248227 1104.7023266

K Na Zn

X0 -134.268394262 7.408329862 -1.637354e+004

salinity 2.549803557 -0.165520186 2.573248e+002

pH 3.708410204 -0.341767495 1.104702e+003

K 0.121317254 -0.004495673 1.000216e+000

Na -0.004495673 0.000253753 -8.119987e-002

Zn 1.000215850 -0.081199866 2.266258e+002

# Compute standard errors

> stderrb <- sqrt(diag(Covb))
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> coef <- c("Intercept","Salinity", "pH", "K", "Na", "Zn")

> heading <- c("Estimate","Std. Error")

> tempb <- cbind(b, stderrb)

> dimnames(tempb) <- list(coef, heading)

> round(tempb,4)

Estimate Std. Error

Intercept 1252.4546 1234.7101

Salinity -30.2849 24.0300

pH 305.4880 87.8810

K -0.2853 0.3483

Na -0.0087 0.0159

Zn -20.6768 15.0541

# Write the estimates and standard errors to a file

> write.matrix(tempb,file="c:/courses/st511/hw/tempb.out")

(i) In Splus, a dataframe is a tow dimensional object that is similar to a matrix in appearance, both have rows
and columns. All entries in a matrix must be of the same type, i.e., all entries are double precision numeric
values, or all entries are character values. The columns of a data frame, on the other hand, correspond to set of
vectors of the same length but possibly of di�erent types, 1.e., one column can be a vector of character values
and another column can be a vetor of numeric values.
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