4. Fractional Imputation (Part 3)

1. Semiparametric fractional imputation for missing covariates problem

- Suppose that we are interested in estimating θ in $f(y \mid x; \theta)$.

- Now, y is always observed and x is subject to missingness.

- Assume MAR in the sense that $Pr(\delta = 1 \mid x, y)$ does not depend on x.

- In this case, the mean score equation for θ is

 $$
 \sum_{i=1}^{n} \left[\delta_i S(\theta; x_i, y_i) + (1 - \delta_i) E\{S(\theta; X, y_i) \mid y_i\} \right]
 $$

 where

 $$
 E\{S(\theta; X, y_i) \mid y_i\} = \frac{\int S(\theta; x, y_i) f(y_i \mid x; \theta) g(x) dx}{\int f(y_i \mid x; \theta) g(x) dx}
 $$

 where $g(\cdot)$ is the density for the marginal distribution of x.

- If $g(x) = g(x; \alpha)$ for some α, the parametric FI for this case can be used to compute

 $$
 E\{S(\theta; X, y_i) \mid y_i\} \approx \sum_{j=1}^{m} w_{ij}^*(\theta, \alpha) S(\theta; x_{ij}^{*(j)}, y_i)
 $$

 where

 $$
 w_{ij}^*(\theta, \alpha) \propto \frac{f(y_i \mid x_{ij}^{*(j)}; \theta) g(x_{ij}^{*(j)}; \alpha)}{h(x_{ij}^{*(j)})}
 $$

 and $h(\cdot)$ is the proposal density for x.

- Parameter α is a nuisance parameter in the sense that we are not interested in estimating α but its estimation is needed to estimate the parameter of interest.
• Semiparametric approach: use a nonparametric model for $g(\cdot)$ but still uses a parametric model for $f(\cdot)$.

• Without loss of generality, assume that the first r units are responding in both x and y and the remaining $n - r$ units are missing in x.

• A nonparametric model for $g(x)$ is that it belongs to the class of $G = \{g(x) = \sum_{i=1}^{r} \alpha_i I(x = x_i); \sum_{i=1}^{r} \alpha_i = 1, \alpha_i \geq 0\}$. Note that the dimension of parameter α is r, which can go to infinity asymptotically.

• EM algorithm using semiparametric fractional imputation

Step 0. For each unit with $\delta_i = 0$, r imputed values of x are assigned with $x_i^{(j)} = x_j$. Let $\alpha^{(0)}_k = 1/r$.

Step 1. At the t-th EM iteration, compute the fractional weight

$$w_{ij(t)}^* = \frac{f(y_i \mid x_i^{(j)}; \theta^{(t)})\alpha_j^{(t)}}{\sum_{k=1}^{r} f(y_i \mid x_i^{(k)}; \theta^{(t)})\alpha_k^{(t)}}$$

where $\theta^{(0)}$ is the MLE of θ using only full respondents.

Step 2. Using $w_{ij(t)}^*$ and $(x_i^{(j)}, y_i)$, update the parameters by solving the imputed score equation:

$$\sum_{i=1}^{r} S(\theta; x_i, y_i) + \sum_{i=r+1}^{n} \sum_{j=1}^{r} w_{ij(t)}^* S(\theta; x_i^{(j)}, y_i) = 0 \quad (1)$$

and

$$\hat{\alpha}_{(t+1)}^j = \frac{1}{n} \left\{ 1 + \sum_{i=r+1}^{n} w_{ij(t)}^* \right\} . \quad (2)$$

Step 2 uses (1) and (2) to update the parameters, which are consistent equations obtained by differentiating the log likelihood of θ and nuisance parameters $\alpha = (\alpha_1, \ldots, \alpha_r)^T$.

• Yang and Kim (2014) developed \sqrt{n}-consistency and the asymptotic normality of the SFI estimator of θ using von Misses calculus and V-statistics theory.
2 Nonparametric fractional imputation

- Bivariate data: \((x_i, y_i)\)
- \(x_i\) are completely observed but \(y_i\) is subject to missingness.
- Joint distribution of \((x, y)\) completely unspecified.
- Assume MAR in the sense that \(P(\delta = 1 \mid x, y)\) does not depend on \(y\).
- Without loss of generality, assume that \(\delta_i = 1\) for \(i = 1, \cdots, r\) and \(\delta_i = 0\) for \(i = r + 1, \cdots, n\).
- We are only interested in estimating \(\theta = E(Y)\).
- Let \(K_h(x_i, x_j) = K((x_i - x_j)/h)\) be the Kernel function with bandwidth \(h\) such that \(K(x) \geq 0\) and
 \[
 \int K(x)dx = 1, \quad \int xK(x)dx = 0, \quad \sigma_K^2 \equiv \int x^2K(x)dx > 0.
 \]
Examples include the following:
- Boxcar kernel: \(K(x) = \frac{1}{2}I(x)\)
- Gaussian kernel: \(K(x) = \frac{1}{\sqrt{2\pi}}\exp(-\frac{1}{2}x^2)\)
- Epanechnikov kernel: \(K(x) = \frac{3}{4}(1 - x^2)I(x)\)
- Tricube Kernel: \(K(x) = \frac{70}{81}(1 - |x|^3)^3I(x)\)

where
\[
I(x) = \begin{cases}
1 & \text{if } |x| \leq 1 \\
0 & \text{if } |x| > 1.
\end{cases}
\]
- Nonparametric regression estimator of \(m(x) = E(Y \mid x)\):
 \[
 \hat{m}(x) = \sum_{i=1}^{r} l_i(x)y_i \quad \text{(3)}
 \]
where
\[
 l_i(x) = \frac{K\left(\frac{x-x_i}{h}\right)}{\sum_j K\left(\frac{x-x_j}{h}\right)}.
\]
Estimator in (3) is often called Nadaraya-Watson kernel estimator.
• Under some regularity conditions and under the optimal choice of h (with $h^* = O(n^{-1/5})$), it can be shown that

$$E \left[\left\{ \hat{m}(x) - m(x) \right\}^2 \right] = O(n^{-4/5}).$$

Thus, its convergence rate is slower than that of parametric one.

• However, the imputed estimator of θ using (3) can achieve the \sqrt{n}-consistency. That is,

$$\hat{\theta}_{NP} = \frac{1}{n} \left\{ \sum_{i=1}^{r} y_i + \sum_{i=r+1}^{n} \hat{m}(x_i) \right\}$$

achieves

$$\sqrt{n} \left(\hat{\theta}_{NP} - \theta \right) \longrightarrow N(0, \sigma^2)$$

where $\sigma^2 = E\{v(x)/\pi(x)\} + V\{m(x)\}$, $m(x) = E(y \mid x)$, $v(x) = V(y \mid x)$ and $\pi(x) = E(\delta \mid x)$. A sketched proof for (5) is given in Appendix A.

• We can express $\hat{\theta}_{NP}$ as a nonparametric fractional imputation (NFI) estimator of the form

$$\hat{\theta}_{NFI} = \frac{1}{n} \left\{ \sum_{i=1}^{r} y_i + \sum_{j=r+1}^{n} \sum_{i=1}^{r} w_{ij}^* y_i^{(j)} \right\}$$

where $w_{ij}^* = l_i(x_j)$, which is defined after (3), and $y_i^{(j)} = y_i$. One may consider a sampling of size m from the set of respondents using the fractional weights to reduce the imputation size. Further research is needed.

• Reference

3 Nearest neighbor imputation

- Consider the same setup for nonparametric fractional imputation.

- Note that a nonparametric estimator \(\hat{m}(x) \) in (3) corresponding to boxcar kernel is the local sample average that takes the value of \(y_i \) in the neighbors within range \(h \) in terms of \(x \)'s. In the extreme case, we can make the choice of \(h \) varying with \(x \) so that it can include only the nearest neighbor.

- That is, for the missing \(y_j \), we use the observed covariate \(x_j \) to identify the nearest neighbor of \(y_j \).

- Let \(j(1) \) be the index of the nearest neighbor of \(j \) such that

\[
d \left(x_{j(1)}, x_j \right) \leq d \left(x_k, x_j \right), \quad k = 1, \ldots, r
\]

where \(d \left(x_i, x_j \right) \) is the distance function between \(x_i \) and \(x_j \).

- Similarly, the second nearest neighbor of \(y_j \), indexed by \(j(2) \), satisfies

\[
d \left(x_{j(1)}, x_j \right) \leq d \left(x_{j(2)}, x_j \right) \leq d \left(x_k, x_j \right), \quad k \in \{1, \ldots, r\} - \{j(1)\}.
\]

- Let \(y_{j(1)}^* \) and \(y_{j(2)}^* \) be the first nearest neighbor and the second nearest neighbor of \(y_j \), respectively. Then, under some regularity conditions, we can show that

\[
\max_j \left| E \left(y_j \mid x_j \right) - E \left(y_{j(1)}^* \mid x_{j(1)}^* \right) \right| = O_p \left(n^{-1+\alpha} \right) \quad (6)
\]

and

\[
\max_j \left| E \left(y_j \mid x_j \right) - E \left(y_{j(2)}^* \mid x_{j(2)}^* \right) \right| = O_p \left(n^{-1+\alpha} \right) \quad (7)
\]

for any \(\alpha > 0 \). A sketched proof for (6) and (7) is given in Appendix B.

- In fact, we can obtain the same result for \(m \)-nearest neighbors and then use

\[
\hat{\theta}_{NNFI} = \frac{1}{n} \left\{ \sum_{i=1}^n y_i + \sum_{i=r+1}^n \sum_{j=1}^m w_{ij}^* y_i^{(j)} \right\} \quad (8)
\]

where \(y_i^{(j)} = y_{i(j)} \) is the \(j \)-th nearest neighbor of \(i \) and \(w_{ij}^* \) is the fractional weight assigned to \(y_{i(j)}^* \). For \(d(x_i, x_j) = (x_i - x_j)^2 \), we may use a Gaussian kernel to get \(w_{ij}^* \propto \exp \{-d(x_i, x_{i(j)})\} \) with \(\sum_{j=1}^m w_{ij}^* = 1 \).
• Furthermore, we may consider a nearest neighbor based on predictive mean matching:

1. Assume $E(y \mid x) = m(x; \beta)$ for some β. Fit a working regression model to get $\hat{y}_i = m(x_i; \hat{\beta})$ for all $i = 1, 2 \cdots, n$.

2. Identify the nearest neighbor using \hat{y}_i. That is, find $j(1)$ that satisfies

$$d(\hat{y}_{j(1)}, \hat{y}_j) \leq d(\hat{y}_k, \hat{y}_j), \quad k = 1, \cdots, r.$$

Similarly, we can identify m nearest neighbors in terms of \hat{y}_i.

3. Apply the m nearest neighbors in Step (2) to obtain the nearest neighbor imputation estimator of the form (8).

• Note that we can express $d(\hat{y}_k, \hat{y}_j) = d_{\hat{\beta}}(x_k, x_j)$ for some distance function $d_{\beta}(a, b)$ that also depends on $\beta = \hat{\beta}$. In this case, proving the consistency of the resulting estimator is more complicated. Further research is needed.

• Removes the curse of dimensionality in identifying the nearest neighbor. Very popular in practice but its theory is under-developed.

• Also, we use real value of y_i in the imputation. Such imputation is called hot deck imputation. (Will be covered in Week 5.)

• References

4 Application to measurement error models

- Bivariate data \((x, y)\)
- We are interested in estimating \(\theta\) in \(f(y \mid x; \theta)\) with \(\theta \in \Omega\).
- Instead of observing \((x, y)\), we observe \((w, y)\) where \(w = x + u\) and \(u\) is the measurement error.
- Suppose that we have a separate sample, called calibration sample or validation sample \(V\), such that we observe \(x\) and \(w\) in \(V\).
- In \(V\), we obtain a nonparametric estimator of \(g(x \mid w)\) using a Kernel regression method. Specification of \(g(x \mid w)\) is called Berkson error model in the measurement error literature.
- We also assume that
 \[
 f(y \mid x, w) = f(y \mid x). \tag{9}
 \]
 If condition (9) is satisfies, then the measurement error, \(u = w - x\), is called non-differential and the variable \(w\) is said to be a surrogate for \(x\).
- In the original sample, the imputed values of \(x\) are obtained from
 \[
 f(x \mid w, y) \propto g(x \mid w)f(y \mid x, w)
 \]
 which reduces to, under assumption (9),
 \[
 f(x \mid w, y) \propto g(x \mid w)f(y \mid x). \tag{10}
 \]
 The first component is computed from the validation sampling using a nonparametric regression. The second part is computed using a parametric model assumption, \(f(y \mid x) = f(y \mid x; \theta)\) for some \(\theta\). Thus, the overall estimation problem becomes a semiparametric estimation problem.
- Specifically, the following semiparametric fractional imputation can be used:
1. From the validation sample, use a nonparametric regression technique to obtain \(\hat{E}(x \mid w) = \sum_{i \in V} l_i(w) x_i \), where
\[
l_i(w) = \frac{K_h(w_i, w)}{\sum_{j \in V} K_h(w_j, w)}.
\]

2. For each \(i \) in the original sample, we use \(m = n_V \) imputed values of \(x_i \) by taking all the element of \(x_j \) in \(V \). That is, we use \(x_{i}^{(j)} = x_j \).

3. Compute the fractional weight associated with \(x_{i}^{(j)} \) by
\[
w_{ij(t)}^{*} = \frac{f(y_i \mid x_{i}^{(j)}; \hat{\theta}(t)) K_h(w_i, w_j)}{\sum_{k=1}^{m} f(y_i \mid x_{i}^{(k)}; \hat{\theta}(t)) K_h(w_i, w_k)}.
\]

4. Update the parameter value by maximizing
\[
l(\theta) = \sum_{i} \sum_{j} w_{ij(t)}^{*} \log f(y_i \mid x_{i}^{(j)})
\]
with respect to \(\theta \in \Omega \) to get \(\hat{\theta}(t+1) \).

5. Goto Step 3 until convergence.

- The resulting SMLE (semiparametric maximum likelihood estimator) of \(\theta \) is the solution to
\[
E\{S(\theta; X, y) \mid y, w\} = 0
\]
which is actually the solution to
\[
E\{S(\theta; X, y) \mid y, w; \theta, g\} = 0
\]
where \(g \) is an infinite dimensional nuisance parameter.

- The \(\sqrt{n} \)-consistency of SMLE of \(\theta \) can be established. (Further research is needed.)

- Reference:
Appendix A: Proof for (5)

Regularity conditions:

(C1). Moments’ conditions: \(E(|m(x)|^\alpha) < \infty, E(|y|^\alpha) < \infty \) for some \(\alpha > 2 \).

(C2). Bounded conditions: \(1 > \pi(x) > d > 0 \) almost surely.

(C3). Smoothness conditions: \(f(x) \) and \(\pi(x) \) have bounded partial derivatives with respect to \(x \) up to an order \(q \) with \(q \geq 2 \), \(2q > d_x \) almost surely, where \(d_x \) is the dimension of \(x \).

(C4). Kernel function conditions:

1. It is bounded and has compact support.
2. \(\int K(s_1, \ldots, s_{d_x})ds_1 \ldots ds_{d_x} = 1 \),
3. \(\int s_i^lK(s_1, \ldots, s_{d_x})ds_1 \ldots ds_{d_x} = 0 \) for any \(i = 1, \ldots, d_x \) and \(1 \leq l < q \).
4. \(\int s_i^qK(s_1, \ldots, s_{d_x})ds_1 \ldots ds_{d_x} \neq 0 \).

(C5). Bandwidth conditions: \(nh^{2d_x} \to \infty, \sqrt{n}h^q \to 0 \), as \(n \to \infty \).

Proof

For simplicity, we only consider the case where \(d_x = 1 \). By using standard argument in the kernel smoothing method, it can be shown that

\[
E \left\{ \frac{1}{nh} \sum_{j=1}^{n} \delta_j K\left(\frac{x-x_j}{h} \right) y_j \right\} = \pi(x)f(x)m(x) + O(h^2)
\] (11)

and

\[
E \left\{ \frac{1}{nh} \sum_{j=1}^{n} \delta_j K\left(\frac{x-x_j}{h} \right) \right\} = \pi(x)f(x) + O(h^2).
\] (12)

According to (11), (12) and by using Taylor linearization, we have

\[
\hat{m}(x) = \frac{(nh)^{-1} \sum_{j=1}^{n} \delta_j K((x-x_j)/h)y_j}{(nh)^{-1} \sum_{j=1}^{n} \delta_j K((x-x_j)/h)}
\]

\[
= m(x) + \frac{1}{\pi(x)f(x)} \left\{ \frac{1}{nh} \sum_{j=1}^{n} \delta_j K\left(\frac{x-x_j}{h} \right) y_j - \pi(x)f(x)m(x) \right\}
\]

\[
- \frac{m(x)}{\pi(x)f(x)} \left\{ \frac{1}{nh} \sum_{j=1}^{n} \delta_j K\left(\frac{x-x_j}{h} \right) - \pi(x)f(x) \right\} + O(h^2)
\] (13)
Therefore, we have

\[
\hat{\theta}_{NP} = \frac{1}{n} \sum_{i=1}^{n} \{ \delta_{i}y_{i} + (1 - \delta_{i})m(x_{i}) \} \\
= \frac{1}{n} \sum_{i=1}^{n} \{ \delta_{i}y_{i} + (1 - \delta_{i})m(x_{i}) \} \\
+ \frac{1}{n^{2}} \sum_{i \neq j}^{n} \frac{(1 - \delta_{i})\delta_{j}h^{-1}K((x_{j} - x_{i})/h) \{ y_{j} - m(x_{i}) \}}{\pi(x_{i})f(x_{i})} + O(h^{2}) \\
\approx \frac{1}{n} \sum_{i=1}^{n} \{ \delta_{i}y_{i} + (1 - \delta_{i})m(x_{i}) \} \\
+ \frac{2}{n(n - 1)} \sum_{i < j}^{n} \frac{1}{2} \frac{(1 - \delta_{i})\delta_{j}h^{-1}K((x_{j} - x_{i})/h) \{ y_{j} - m(x_{i}) \}}{\pi(x_{i})f(x_{i})} \\
+ \frac{(1 - \delta_{j})\delta_{i}h^{-1}K((x_{i} - x_{j})/h) \{ y_{i} - m(x_{j}) \}}{\pi(x_{j})f(x_{j})} + O(h^{2}).
\] (14)

Define

\[
\zeta_{ij} = \frac{(1 - \delta_{i})\delta_{j}h^{-1}K((x_{j} - x_{i})/h) \{ y_{j} - m(x_{i}) \}}{\pi(x_{i})f(x_{i})}, \\
\zeta_{ji} = \frac{(1 - \delta_{j})\delta_{i}h^{-1}K((x_{i} - x_{j})/h) \{ y_{i} - m(x_{j}) \}}{\pi(x_{j})f(x_{j})}
\]

and \(h(z_{i}, z_{j}) = (\zeta_{ij} + \zeta_{ji})/2\) with \(z_{i} = (x_{i}, y_{i}, \delta_{i})\), then \(2 \sum_{i \neq j} h(z_{i}, z_{j})/ \{ n(n - 1) \}\) is the U-statistic. According to U-statistic theory (e.g. Serfling, 1980, Ch. 5), we have

\[
\frac{2}{n(n - 1)} \sum_{i < j} h(z_{i}, z_{j}) = \frac{2}{n} \sum_{i=1}^{n} E \{ h(z_{i}, z_{j}) | z_{i} \} + o_{p}(n^{-1/2}).
\] (15)

Let \(s = (x_{j} - x_{i})/h\), by \(nh^{2} \to \infty, nh^{4} \to 0\) and according to Taylor linearization, we have

\[
E(\zeta_{ij} | z_{i}) = E \left[\frac{(1 - \delta_{i})\delta_{j}h^{-1}K((x_{j} - x_{i})/h) \{ y_{j} - m(x_{i}) \}}{\pi(x_{i})f(x_{i})} | z_{i} \right] \\
= \frac{1 - \delta_{i}}{\pi(x_{i})f(x_{i})} E \left[\pi(x_{j}) \frac{1}{h} K \left(\frac{x_{j} - x_{i}}{h} \right) \{ m(x_{j}) - m(x_{i}) \} | z_{i} \right] \\
= \frac{1 - \delta_{i}}{\pi(x_{i})f(x_{i})} \int_{-\infty}^{\infty} \pi(x_{i} + hs) K(s) \{ m(x_{i} + hs) - m(x_{i}) \} f(x_{i} + hs) ds \\
= O(h^{2})
\] (16)
and

\[E(\zeta_{ji}|z_i) = E\left[\frac{(1-\delta_j)\delta_i h^{-1}K((x_i - x_j)/h) \{y_i - m(x_j)\}}{\pi(x_j)f(x_j)} \bigg| z_i \right] \]

\[= \delta_i E\left[\frac{(1 - \pi_j)h^{-1}K((x_i - x_j)/h) \{y_i - m(x_j)\}}{\pi(x_j)f(x_j)} \bigg| z_i \right] \]

\[= \delta_i \int \frac{1 - \pi(x_i + hs)}{f(x_i + hs)\pi(x_i + hs)} K(s) \{y_i - m(x_i)\} f(x_i) ds + O(h^2) \]

\[= \delta_i \frac{1 - \pi(x_i)}{\pi(x_i)} \{y_i - m(x_i)\} + O(h^2). \] \quad (17)

According to (14)-(17), we have

\[\hat{\theta}_{NP} = \frac{1}{n} \sum_{i=1}^{n} \{\delta_i y_i + (1 - \delta_i)m(x_i)\} \]

\[+ \frac{2}{n(n-1)} \sum_{i<j} h(z_i, z_j) + O(n^{-1/2}) \]

\[= \frac{1}{n} \sum_{i=1}^{n} \{\delta_i y_i + (1 - \delta_i)m(x_i)\} \]

\[+ \frac{1}{n} \sum_{i=1}^{n} \delta_i \frac{1 - \pi(x_i)}{\pi(x_i)} \{y_i - m(x_i)\} + o(n^{-1/2}) \]

\[= \frac{1}{n} \sum_{i=1}^{n} \left[\frac{\delta_i}{\pi(x_i)} y_i - \left\{ \frac{\delta_i}{\pi(x_i)} - 1 \right\} m(x_i) \right] + o_p(n^{-1/2}). \]

Hence, we have (5) with \(\sigma^2 = E \{\sigma^2(x)/\pi(x)\} + \text{var} \{m(x)\} \), where \(\sigma^2(x) = \text{var}(y|x) \).

Appendix B: Proof for (6) and (7)

We assume the following conditions.

(C1) Let \(m(x) = E(y|x) \) be a function of \(x \) that satisfies

\[|m(x_1) - m(x_2)| < C_1 |d(x_1, x_2)|. \]

for some constant \(C_1 \) for all \(x_1 \) and \(x_2 \).

(C2) Let \(m_2(x) = E(y^2|x) \) be a function of \(x \) that satisfies

\[|m_2(x_1) - m_2(x_2)| < C_2 |d(x_1, x_2)|. \]

for some constant \(C_2 \) for all \(x_1 \) and \(x_2 \).
(C3) For each \(i \in U \), the cumulative distribution of \(d(x) = d(x_i, x) \), denoted by \(F(d) \), satisfies
\[
\lim_{d \to 0} \frac{F(d)}{d} > 0,
\]
where it is understood that \(F(0) > 0 \) satisfies the condition.

Proof. Define \(d_{ij} = d(x_i, x_j) \) for \(i \neq j \) and let \(d_{j(1)} \) be the smallest value of \(d_{ij} \) among \(i \in A \cap \{j\}^c \). By definition, \(d_{j(1)} = d(x_j, x_{j(1)}) \). Similarly, we can define \(d_{j(2)} = d(x_j, x_{j(2)}) \). Note that, for \(a_n = n^{1-\alpha} \),
\[
Pr \left(\max_j a_n d_{j(1)} > M \right) = \sum_{j=1}^{n} Pr \left(d_{j(1)} > M/a_n \right)
= n \left[1 - F(M/a_n) \right]^n
= n \exp \left[a_n n^\alpha \log \left(1 - F(M/a_n) \right) \right]
\leq n \exp \left[-a_n n^\alpha F(M/a_n) \right],
\]

since \(\log(1 - x) \leq -x \) for \(x \in [0, 1) \). Thus, writing \(t = M/a_n \), we have
\[
Pr \left(\max_j a_n d_{j(1)} > M \right) \leq n \exp \left[-M n^\alpha F(t) / t \right]
\]
which goes to zero as \(n \to \infty \), since, by (C3), \(F(t) / t \) is bounded below by some constant greater than zero. Thus, we have \(\max_j a_n d_{j(1)} = O_p(1) \) and, by (C1), we have (6).

To prove (7), we use
\[
Pr \left(\max_j a_n d_{j(2)} > M \right) = \sum_{j=1}^{n} Pr \left(d_{j(2)} > M/a_n \right)
= n \left[1 - F(M/a_n) \right]^n + n \left[1 - F(M/a_n) \right]^{n-1} F(M/a_n)
= n \left(1 - F(M/a_n) \right)^{n-1} \{ 1 + (n-1)F(M/a_n) \}
= n \exp \left[(a_n n^\alpha - 1) \log \left(1 - F(M/a_n) \right) \{ 1 + (n-1)F(M/a_n) \} \right]
\leq n \exp (1) \exp \left[-a_n n^\alpha F(M/a_n) \right] \{ 1 + nF(M/a_n) \}
= K n^2 \exp \left[-M n^\alpha F(t) / t \right],
\]
for some \(K \) where \(t = M/a_n \). Thus, for any \(\epsilon > 0 \), we have \(Pr \left(\max_j a_n d_{j(2)} > M \right) \leq \epsilon \) for sufficiently large \(n \). Therefore, we have \(\max_j a_n d_{j(2)} = O_p(1) \) and, by (C1), (A2) is proved.

\[\Box\]