Calibration estimation using exponential tilting in sample surveys

Jae Kwang Kim *

February 23, 2010

Abstract

We consider the problem of parameter estimation with auxiliary information, where the auxiliary information takes the form of known moments. Calibration estimation is a typical example of using the moment conditions in sample surveys.

Given the parametric form of the original distribution of the sample observations, we use the estimated importance sampling of Henmi et al (2007) to obtain an improved estimator. If we use the normal density to compute the importance weights, the resulting estimator takes the form of the one-step exponential tilting estimator. The proposed exponential tilting estimator is shown to be asymptotically equivalent to the regression estimator, but it avoids extreme weights and has some computational advantages over the empirical likelihood estimator. Variance estimation is also discussed and results from a limited simulation study are presented.

Key words: Benchmarking estimator; Empirical likelihood; Instrumental variable calibration; Importance sampling; Regression estimator.

*Department of Statistics, Iowa State University, Ames, Iowa, 50011, U.S.A.
1 Introduction

Consider the problem of estimating $Y = \sum_{i=1}^{N} y_i$ for a finite population of size N. Let A denote the index set of the sample obtained by a probability sampling scheme. In addition to y_i, suppose that we also observe a p-dimensional auxiliary vector x_i in the sample such that $X = \sum_{i=1}^{N} x_i$ is known from an external source. We are interested in estimating Y using the auxiliary information X.

The Horvitz-Thompson (HT) estimator of the form

$$\hat{Y}_d = \sum_{i \in A} d_i y_i,$$

where $d_i = 1/\pi_i$ is the design weight and π_i is the first order inclusion probability, is unbiased for Y. But, it does not make use of the information given by X. According to Kott (2006), a calibration estimator can be defined as the estimator of the form

$$\hat{Y}_w = \sum_{i \in A} w_i y_i,$$

where the weights w_i satisfy

$$\sum_{i \in A} w_i x_i = X$$

and \hat{Y}_w is asymptotically design unbiased (ADU). Calibration estimation has become very popular in survey sampling because it provides consistency across different surveys and often improves the efficiency. (Särndal, 2007).

The regression estimator, using the weights

$$w_i = d_i + (X - \bar{X}_d)' \left(\sum_{j \in A} d_j x_j x_j' \right)^{-1} d_i x_i,$$

where $\bar{X}_d = \frac{1}{|A|} \sum_{i \in A} x_i$.

1
obtained by minimizing
\[\sum_{i \in A} (w_i - d_i)^2 / d_i \]
subject to constraint (2), is asymptotically design unbiased. Note that if an intercept term is included in the column space of \(X \) matrix then (2) implies that the population size \(N \) is known. If \(N \) is unknown, one can require that the sum of the final weights are equal to the sum of the design weights. Thus,
\[\sum_{i \in A} w_i = \hat{N}, \]
where
\[\hat{N} = \begin{cases} N & \text{if } N \text{ is known} \\ \sum_{i \in A} d_i & \text{otherwise,} \end{cases} \]
can be imposed as a constraint in addition to (2), which yields the weights
\[w_i = \frac{\hat{N}}{\hat{N}_d} d_i + \left(X - \frac{\hat{N}}{\hat{N}_d} \hat{X}_d \right) \cdot \left(\sum_{j \in A} d_j (x_j - \bar{X}_d) (x_j - \bar{X}_d) \right)^{-1} \]
\[d_i (x_i - \bar{X}_d), \]
where \(\hat{X}_d = \sum_{i \in A} d_i x_i, \hat{N}_d = \sum_{i \in A} d_i, \) and \(\bar{X}_d = \hat{X}_d / \hat{N}_d. \) We define the regression estimator to be \(\hat{Y}_{\text{reg}} = \sum_{i \in A} w_i y_i \) using the weights (5). The regression estimator can be efficient if \(y_i \) is linearly related with \(x_i \) (Isaki and Fuller, 1982; Fuller, 2002), but the weights in the regression estimator can take negative or extremely large values.

The empirical likelihood (EL) calibration estimator, discussed by Chen and Qin (1993), Chen and Sitter (1999), Wu and Rao (2007), and Kim (2009), is obtained by maximizing the pseudo empirical likelihood
\[\sum_{i \in A} d_i \ln (w_i) \]
subject to constraints (2) and (4). The solution to the optimization problem can be written as

\[w_i = d_i \frac{1}{\lambda_0 + \lambda_1' \left(x_i - \bar{x}/\hat{N}\right)}, \]

(6)

where \(\lambda_0 \) and \(\lambda_1 \) satisfy constraints (2), (4), and \(w_i > 0 \) for all \(i \). The EL calibration estimator is asymptotically equivalent to the regression estimator using weights (5) and avoids negative weights if a solution exists, but can result in extremely large weights.

Because the empirical likelihood method requires solving nonlinear equations, the computation can be cumbersome. Furthermore, in some extreme cases, \(\bar{X} = N^{-1} \sum_{i=1}^{N} x_i \) does not belong to the convex hull of the sample \(x_i \)'s and the solution does not exist. In this extreme situation, the constraint (2) can be relaxed.

Rao and Singh (1997) solved a similar problem by allowing

\[\left| \sum_{i \in A} w_i x_{ij} - X_j \right| \leq \delta_j X_j, \quad j = 1, 2, \ldots, p, \]

for some small tolerance level \(\delta_j > 0 \) where \(X_j = \sum_{i=1}^{N} x_{ij} \). Note that the choice of \(\delta_j = 0 \) leads to the exact calibration condition (2). Rao and Singh (1997) chose the tolerance level \(\delta_j \) using a shrinkage factor in the ridge regression but their approach does not directly apply to the empirical likelihood method and the choice of \(\delta_j \) is somewhat unclear. Chambers (1996) and Beaumont and Bocci (2008) also discussed a ridge regression estimation in the context of avoiding extreme weights. Breidt et al. (2005) used penalized spline approach to obtain the ridge calibration. Recently, Park and Fuller (2009) developed a method of obtaining the shrinkage factor \(\delta_j \) using a regression superpopulation model with random components.
Chen et al (2008) tackled a similar problem in the context of the empirical likelihood method and proposed a solution by adding an artificial point such that \(\bar{X} = N^{-1} \sum_{i=1}^{N} x_i \) would belong to the convex hull of the augmented \(x_i \)'s. The proposed estimator in Chen et al (2008) only satisfies the calibration property approximately in the sense that

\[
\sum_{i \in A} w_i x_i - X = o_p \left(\frac{n^{-1/2}}{N} \right).
\]

This approximate calibration property is attractive because it allows more generality in the choice of weights. In particular, when the dimension of the auxiliary variable \(x \) is large the calibration constraint (2) can be quite restrictive. As can be seen in Section 2, an estimator satisfying the asymptotic calibration property (7) enjoys most of the desirable properties of the empirical likelihood calibration estimator and is computationally efficient.

In this paper, we consider a class of empirical-likelihood-type estimators that satisfy the approximate calibration property (7). In Section 2, the idea of estimated importance sampling of Henmi et al (2007) is discussed and a new estimator using this methodology is proposed. In Section 3, a weight trimming technique to avoid extreme calibration weights is proposed. In Section 4, variance estimation of the proposed estimator is discussed. In Section 5, results from a simulation study are presented. Concluding remarks are made in Section 6.

2 Proposed method

To introduce the proposed method, we first discuss estimated importance sampling introduced by Henmi et al (2007). Suppose that \(x_i \) is observed
throughout the population but \(y_i \) is observed only in the sample. We assume a superpopulation model for \(x_i \) with density \(f(x; \eta) \) known up to a parameter \(\eta \in \Omega \). The superpopulation model characterized by the density \(f(x; \eta) \) is a working model in the sense that the model is used to derive a model-assisted estimator (Särndal et al., 1992).

Let \(\hat{\eta} \) be the pseudo maximum likelihood estimator of \(\eta \) computed from the sample

\[
\hat{\eta} = \arg \max_{\Omega} \sum_{i \in A} d_i \ln \{ f(x_i; \eta) \}
\]

and let \(\eta_{0,N} \) be the maximum likelihood estimator of \(\eta \) computed from the population

\[
\eta_{0,N} = \arg \max_{\Omega} \sum_{i=1}^{N} \ln \{ f(x_i; \eta) \}.
\]

Following Henmi et al (2007), we can construct the following estimated importance weight

\[
w_i = d_i \frac{f(x_i; \eta_{0,N})}{f(x_i; \hat{\eta})}.
\]

(8)

To discuss the asymptotic properties of the estimator using the weights in (8), assume a sequence of the finite populations and the samples, as in Isaki and Fuller (1982), such that

\[
\sum_{i \in A} d_i (x_i', y_i) - \sum_{i=1}^{N} (x_i', y_i) = O_p \left(n^{-1/2} N \right)
\]

for all possible \(A \) and for each \(N \). The following theorem presents some asymptotic properties of the estimator with the estimated importance weights in (8).
Theorem 1 Under the regularity conditions given in Appendix A, the estimator $\hat{Y}_w = \sum_{i \in A} w_i y_i$, with the w_i defined by (8), satisfies

$$\sqrt{n}N^{-1} \left(\hat{Y}_w - \hat{Y}_l \right) = o_p(1), \quad (9)$$

where

$$\hat{Y}_l = \hat{Y}_d - \hat{\Sigma}_s^y \hat{\Sigma}_s^{-1} \hat{S}_{0d}, \quad (10)$$

\hat{Y}_d is defined in (1), $\hat{S}_{0d} = \sum_{i \in A} d_i s_{i0}$, $\hat{\Sigma}_sy = N^{-1} \sum_{i \in A} d_i s_{i0} y_i$, and $\hat{\Sigma}_{ss} = N^{-1} \sum_{i \in A} d_i s_{i0}^{\otimes 2}$. Here, $s_{i0} = \partial \ln f(x_i; \eta) / \partial \eta |_{\eta = \eta_{0,N}}$ and the notation $B^{\otimes 2}$ denotes BB'.

The proof of Theorem 1 is presented in Appendix A. Because $S_{0N} \equiv \sum_{i=1}^N s_{i0} = 0$, we can write (10) as

$$\hat{Y}_l = \hat{Y}_d + \hat{\Sigma}_s^y \hat{\Sigma}_s^{-1} \left(S_{0N} - \hat{S}_{0d} \right),$$

which is a regression estimator of Y using $s_i(\eta_{0N})$ as the auxiliary variable. Therefore, under regularity conditions, the proposed estimator using estimated importance sampling is asymptotically unbiased and has asymptotic variance no greater than that of the direct estimator \hat{Y}_d. Note that the validity of Theorem 1 does not require that the working model $f(x; \eta)$ be true.

If the density of x_i is a multivariate normal density, then the weights in (8) become

$$w_i = \frac{\phi(x_i; \bar{X}_N, \Sigma_{xx,N})}{\phi(x_i; \bar{X}_d, \hat{\Sigma}_{xx,d})}, \quad (11)$$

where \bar{X}_d is defined after (5), $\hat{\Sigma}_{xx,d} = \sum_{i \in A} d_i (x_i - \bar{X}_d)^{\otimes 2} / \hat{N}_d$, $\Sigma_{xx,N} = \sum_{i=1}^N (x_i - \bar{X}_N)^{\otimes 2} / N$, and $\phi(x; \mu, \Sigma)$ is the density of the multivariate normal distribution with mean μ and variance-covariance matrix Σ. If $\Sigma_{xx,N}$ is
unknown and only \bar{X}_N is available, then we can use

$$w_i = d_i \frac{\phi \left(\mathbf{x}_i; \bar{X}_N, \hat{\Sigma}_{xx,d} \right)}{\phi \left(\mathbf{x}_i; \bar{X}_d, \hat{\Sigma}_{xx,d} \right)}.$$ (12)

Tillé (1998) derived weights similar to those in (12) in the context of conditional inclusion probabilities.

In general, the parametric model for \mathbf{x}_i is unknown. Thus, we consider an approximation for the importance weights in (8) using the Kullback-Leibler information criterion for distance. Let $f (\mathbf{x})$ be a given density for \mathbf{x} and let P_0 be the set of densities that satisfy the calibration constraint. That is,

$$P_0 = \left\{ f_0 (\mathbf{x}); \int f_0 (\mathbf{x}) \, d\mathbf{x} = 1, \int \mathbf{x} f_0 (\mathbf{x}) \, d\mathbf{x} = \bar{X}_N \right\}.$$

The optimization problem using Kullback-Leibler distance can be expressed as

$$\min_{f_0 \in P_0} \int f_0 (\mathbf{x}) \ln \left\{ \frac{f_0 (\mathbf{x})}{f (\mathbf{x})} \right\} d\mathbf{x}. \quad (13)$$

The solution to (13) is

$$f_0 (\mathbf{x}) = f (\mathbf{x}) \frac{\exp \left(\hat{\lambda}' \mathbf{x} \right)}{E \left\{ \exp \left(\hat{\lambda}' \mathbf{x} \right) \right\}} \quad (14)$$

where $\hat{\lambda}$ satisfies $\int \mathbf{x} f_0 (\mathbf{x}) \, d\mathbf{x} = \bar{X}_N$. Thus, the estimated importance weights in (8) using the optimal density in (14) can be written

$$w_i = d_i \frac{f_0 (\mathbf{x}_i)}{f (\mathbf{x}_i)} = d_i \exp \left(\hat{\lambda}_0 + \hat{\lambda}_1' \mathbf{x}_i \right) \quad (15)$$

where $\hat{\lambda}_0$ and $\hat{\lambda}_1$ satisfy constraint (2) and (4). The shift from $f (\mathbf{x})$ to $f_0 (\mathbf{x})$ in (14) is called exponential tilting. Thus, an estimator using the
weight (15) satisfying the calibration constraints (2) and (4) can be called an exponential tilting (ET) calibration estimator. That is, we define the ET calibration estimator as

$$\hat{Y}_{ET} = \sum_{i \in A} d_i \exp \left(\hat{\lambda}_0 + \hat{\lambda}_1' x_i \right) y_i,$$

(16)

where $\hat{\lambda}_0$ and $\hat{\lambda}_1$ satisfy constraint (2) and (4). Estimators based on exponential tilting have been used in various contexts. For examples, see Efron (1982), Kitamura and Stutzer (1997), and Imbens (2002). When N is known, Folsom (1991) and Deville et al. (1993) developed the estimator (16) using a very different approach.

To compute $\hat{\lambda}_0$ and $\hat{\lambda}_1$ in (16), because of the calibration constraints (2) and (4), we need to solve the following estimating equations:

$$\hat{U}_0(\lambda) \equiv \sum_{i \in A} d_i \exp (\lambda_0 + \lambda_1' x_i) - \hat{N} = 0 \quad (17)$$
$$\hat{U}_1(\lambda) \equiv \sum_{i \in A} d_i \exp (\lambda_0 + \lambda_1' x_i) x_i - X = 0, \quad (18)$$

where $\lambda' = (\lambda_0, \lambda_1')$. Writing $\hat{U}' = \left(\hat{U}_0, \hat{U}_1' \right)$, we can use the Newton-type algorithm of the form

$$\hat{\lambda}_{t+1} = \hat{\lambda}_t - \left\{ \frac{\partial}{\partial \lambda} \hat{U} \left(\hat{\lambda}_t \right) \right\}^{-1} \hat{U} \left(\hat{\lambda}_t \right)$$

and the solution can be written

$$\hat{\lambda}_{t+1} = \hat{\lambda}_t + \left\{ \sum_{i \in A} w_{i(t)} (x_i - X_{w(t)}) \otimes^2 \right\}^{-1} \left(X - \sum_{i \in A} w_{i(t)} x_i \right), \quad (19)$$

where $w_{i(t)} = d_i \exp \left(\hat{\lambda}_{0(t)} + \hat{\lambda}_{1(t)}' x_i \right)$ and $X_{w(t)} = \sum_{i \in A} w_{i(t)} x_i / \sum_{i \in A} w_{i(t)}$, with the initial values $\hat{\lambda}_{1(0)} = 0$. Once $\hat{\lambda}_{t(t)}$ is computed by (19), $\hat{\lambda}_{0(t)}$ is
computed by

$$\exp\left(\hat{\lambda}_0(t)\right) = \frac{\hat{N}}{\sum_{i \in A} d_i \exp\left(\hat{\lambda}_1(t) x_i\right)}.$$ \hspace{1cm} (20)

Note that, \(w_i(0) = d_i \hat{N} / \hat{N}_d \) since \(\hat{\lambda}_1(0) = 0 \). Because \(\hat{U}(\lambda) \) is twice continuously differentiable and convex in \(\lambda \), the sequence \(\hat{\lambda}_1(t) \) always converges if the solution to \(\hat{U}(\lambda) = 0 \) exists (Givens and Hoeting, 2005). The convergence rate is quadratic in the sense that

$$\left|\hat{\lambda}_1(t+1) - \hat{\lambda}_1\right| \leq C \left|\hat{\lambda}_1(t) - \hat{\lambda}_1\right|^2$$

for some constant \(C \), where \(\hat{\lambda}_1 = \lim_{t \to \infty} \hat{\lambda}_1(t) \).

By construction, the \(t \)-step exponential tilting (ET) estimator, defined by

$$\hat{Y}_{ET}(t) = \sum_{i \in A} d_i \exp\left(\hat{\lambda}_0(t) + \hat{\lambda}_1(t) x_i\right) y_i$$ \hspace{1cm} (21)

where \(\hat{\lambda}_0(t) \) and \(\hat{\lambda}_1(t) \) are computed by (19) and (20), satisfies the calibration constraint (2) for sufficiently large \(t \). By the recursive form in (19) with \(\hat{\lambda}_1(0) = 0 \), we can write

$$\hat{\lambda}_1(t) = \sum_{j=0}^{t-1} \left(S_{xx,w(j)} \right)^{-1} \left(\bar{X}_N - \bar{X}_{w(j)} \right),$$ \hspace{1cm} (22)

where \(\bar{X}_N = X / \hat{N} \) and \(S_{xx,w(j)} = \sum_{i \in A} w_i(t)(x_i - \bar{X}_{w(t)})(x_i - \bar{X}_{w(t)})^2 / \hat{N} \). Thus, the \(t \)-step ET estimator (21) can be written as

$$\hat{Y}_{ET}(t) = \hat{N} \sum_{i \in A} d_i g_i(t) y_i,$$

where

$$g_i(t) = \prod_{j=0}^{t-1} \frac{\phi(x_i; \bar{X}_N, S_{xx,w(j)})}{\phi(x_i; \bar{X}_{w(j)}, S_{xx,w(j)})}.$$

The following theorem presents some asymptotic properties of the exponential tilting estimator.
Theorem 2 The t-step ET estimator (21) based on equations (19) and (20) satisfies
\[
\sqrt{nN^{-1}} \left(\hat{Y}_{ET(t)} - \hat{Y}_{reg} \right) = o_p(1),
\]
for each $t = 1, 2, \cdots$, where \hat{Y}_{reg} is the regression estimator using the regression weight in (5).

The proof of Theorem 2 is presented in Appendix B. Theorem 2 presents the asymptotic equivalence between the t-step ET estimator and the regression estimator. Unlike the regression estimator, the weights of the ET estimator are always positive. For sufficiently large t, the t-step ET estimator satisfies the calibration constraint (2). Deville and Särndal (1992) proved the result (23) for the special case of $t \to \infty$.

Remark 1 The one-step ET estimator, defined by $\hat{Y}_{ET(1)}$, has a closed-form tilting parameter
\[
\hat{\lambda}_{1(1)} = \left\{ \sum_{i \in A} d_i (x_i - \bar{X}_d) \otimes 2 / \hat{N}_d \right\}^{-1} \left(\bar{X}_N - \bar{X}_d \right),
\]
where $\bar{X}_N = X / \hat{N}$ and $\bar{X}_d = \sum_{i \in A} d_i x_i / \sum_{i \in A} d_i$. By Theorem 2, the one-step ET estimator is asymptotically equivalent to the regression estimator, but the calibration constraint (2) is not necessarily satisfied. Using Theorem 2 applied to x_i instead of y_i, the one-step ET estimator can be shown to satisfy the approximate calibration constraint described in (7).

Remark 2 The ET estimator can also be derived by finding the weights that minimize
\[
Q(w) = \sum_{i \in A} w_i \ln \left(\frac{w_i}{d_i} \right)
\]
subject to constraints (2) and (4). The objective function (25) is often called the minimum discrimination function. The minimum value of $Q(w)$ is zero if (4) is the only calibration constraint and is monotonically increasing if additional calibration constraints are imposed.

3 Instrumental-variable calibration

We consider some extension of the proposed method in Section 2 to a more general class of ET calibration estimator using instrumental-variables. Use of instrumental-variable in the calibration estimation has been discussed in Estavao and Särndal (2000) and Kott (2003) in some limited simulations. Let $z_i = z(x_i)$ be an instrumental-variable derived from x_i, where the function $z(\cdot)$ is to be determined. The instrumental-variable exponential tilting (IVET) estimator using the instrumental variable z_i can be defined as

$$
\hat{Y}_{IVET} = \sum_{i \in A} w_i y_i = \sum_{i \in A} d_i \exp \left(\hat{\lambda}_0 + \hat{\lambda}_1' z_i \right) y_i,
$$

where $\hat{\lambda}_0$ and $\hat{\lambda}_1$ are computed from (2) and (4). Note that the IVET estimator (26) is a class of estimators indexed by z_i. The instrumental-variable approach defined in (26) provides more flexibility in creating the ET estimator. The choice of $z_i = x_i$ leads to the standard ET estimator in (16) but some transformation $z_i = z(x_i)$ can make the resulting ET estimator in (26) more attractive in practice. The solution to the calibration equations can be obtained iteratively by

$$
\hat{\lambda}_{1(t+1)} = \hat{\lambda}_{1(t)} + \left\{ \sum_{i \in A} w_{i(t)} (x_i - X_{w(t)})' (z_i - Z_{w(t)})' \right\}^{-1} \left(X - \sum_{i \in A} w_{i(t)} x_i \right),
$$

(27)
where \(w_i(t) = d_i \exp(\lambda_0(t) + \lambda_1'(t)z_i)\) and \(\hat{Z}_{w(t)} = \sum_{i \in A} w_i(t)z_i / \sum_{i \in A} w_i(t)\), with equation (20) unchanged and \(\hat{\lambda}_1(0) = 0\).

The IVET estimator (26) is useful in creating the final weights that have less extreme values. Since the final weight in (26) is a function of \(z_i\), we can make \(g_i = w_i/d_i\) bounded by making \(z_i\) bounded. To create bounded \(z_i\), we can use a trimmed version of \(x_i\), noted by \(z_i = (z_{i1}, z_{i2}, \cdots, z_{ip})\), where

\[
z_{ij} = \begin{cases}
 x_{ij} & \text{if } |x_{ij} - \bar{x}_j| \leq C_j S_j \\
 \bar{x}_j + C_j S_j & \text{if } x_{ij} > \bar{x}_j + C_j S_j \\
 \bar{x}_j - C_j S_j & \text{if } x_{ij} < \bar{x}_j - C_j S_j,
\end{cases}
\]

\(\bar{x}_j = N^{-1} \sum_{i \in A} d_i x_{ij}, \quad S_j^2 = N^{-1} \sum_{i \in A} d_i (x_{ij} - \bar{x}_j)^2\), and \(C_j\) is a threshold for detecting outliers, for example, \(C_j = 3\). Thus, the IVET estimator using the instrumental-variable obtained by trimming \(x_i\) can be used as an alternative approach to weight trimming.

Instead of using the trimmed instrumental variable \(z_i\) in (28), we can consider the following instrumental variable

\[z_i = x_i \Phi_i\]

for some symmetric matrix \(\Phi_i\) such that \(z_i\) is bounded. Some suitable choice of \(\Phi_i\) can also improve the efficiency of the resulting IVET estimator. To see this, using the same argument from Theorem 2, the instrumental-variable ET estimator (26) using equations (20) and (27) is asymptotically equivalent to

\[
\hat{Y}_{IV, reg} = \hat{Y}_d + (X - \hat{X}_d)\' \hat{B}_z
\]

where

\[
(\hat{X}'_d, \hat{Y}_d) = \left(\frac{\hat{N}}{N_d} \right) \left(\hat{X}'_d, \hat{Y}_d \right)
\]
and
\[\hat{B}_z = \left\{ \sum_{i \in A} d_i (z_i - \bar{Z}_d) (x_i - \bar{X}_d)' \right\}^{-1} \sum_{i \in A} d_i (z_i - \bar{Z}_d) y_i. \]
(30)
The estimator (29) takes the form of a regression estimator and is called the instrumental-variable regression estimator. Thus, under the choice of \(z_i = \Phi_i x_i \), the instrumental-variable regression estimator can be written as (29) with
\[\hat{B}_z = \left\{ \sum_{i \in A} d_i (x_i - \bar{X}_d) \Phi_i (x_i - \bar{X}_d)' \right\}^{-1} \sum_{i \in A} d_i (x_i - \bar{X}_d) \Phi_i y_i \]
and its variance is minimized for \(\Phi_i = V_i^{-1} \) where \(V_i \) is the model-variance of \(y_i \) given \(x_i \) (Fuller, 2009). The model-variance is the variance under the working superpopulation model for the regression of \(y_i \) on \(x_i \). Thus, instrumental-variable can be used to improve the efficiency of the resulting calibration estimator, in addition to avoid extreme final weights. Furthermore, the optimal instrumental-variable can be trimmed as in (28) to make the final weights bounded. Further investigation of the optimal choice of \(\Phi \) is beyond the scope of this paper and will be a topic of future research.

Remark 3 Deville and Särndal (1992) also considered range-restricted calibration weights of the form
\[w_i = d_ig_i(\hat{\lambda}) = d_i \frac{L(U - 1) + U(1 - L) \exp(K\hat{\lambda}' x_i)}{(U - 1) + (1 - L) \exp(K\hat{\lambda}' x_i)}, \]
(31)
where \(K = (U - L)/(1 - L)(U - 1) \), for some \(L \) and \(U \) such that \(0 < L < 1 < U \). If calibration constraints (2) and (4) are to be satisfied, then we can use \(\hat{\lambda}_0 + \hat{\lambda}_1 x_i \) instead of \(\hat{\lambda}' x_i \) in (31). The resulting calibration estimator is
asymptotically equivalent to the regression estimator using the weights in (5) while the IVET estimator is asymptotically equivalent to the instrumental-variable regression estimator (29). Computation for obtaining $\hat{\lambda}$ is somewhat complicated because $\partial g_i(\lambda)/\partial \lambda$ is not easy to evaluate in (31). In the IVET estimator, the computation, given by (27), is straightforward.

To compare the proposed weight with existing methods, we consider an artificial example of a simple random sample with size $n = 5$ where $x_k = k$, $k = 1, 2, \cdots, 5$. Calculations are for three population means of x; $\bar{X}_N = 3$, $\bar{X}_N = 4.5$, and $\bar{X}_N = 6$. Table 1 presents the resulting weights for the regression estimator, the empirical likelihood (EL) estimator, the t-step ET estimator (16) with $t = 1$ and $t = 10$, and the t-step instrumental variable exponential tilting (IVET) estimator (26) with $t = 1$ and $t = 10$. For the IVET estimator, the instrumental variable z_i is created by

$$z_i = \begin{cases}
1.5 & \text{if } x_i \leq 1.5 \\
 x_i & \text{if } x_i \in (1.5, 4.5) \\
4.5 & \text{if } x_i \geq 4.5.
\end{cases}$$

The last column of Table 1 presents the estimated mean of X using the respective calibration weights. All the weights are equal to $1/n = 0.2$ for $\bar{X}_N = 3$. The regression estimator is linearly increasing in x_i but has negative weights for the population with $\bar{X}_N = 4.5$ and $\bar{X}_N = 6$. For the population where $\bar{X}_N = 6$, the weights could not be computed for the EL method because \bar{X}_N is outside the range of the sample x_i's. In this extreme case of $\bar{X}_N = 6$, the ET method provides nonnegative weights by sacrificing the calibration constraint and the EL estimator has more extreme weights than the ET estimator or IVET estimator in the sense that the weight for $k = 5$ is the largest among the estimators considered. The weight for the one-step
ET estimator is close to that of the regression estimator for large x_i but it is close to that of EL estimator for small x_i. The 10-step ET estimators has better calibration properties in the sense of smaller value of squared error, $(\sum_{k=1}^{5} w_k x_k - \bar{X}_N)^2$, than the one-step ET estimator. The ET estimator and the IVET estimator provide almost the same estimates of \bar{X}_N for both t, but the IVET estimator produces less extreme weights than the ET estimator.

< Table 1 around here. >

4 Variance estimation

We now discuss variance estimation of the ET calibration estimators of Sections 2 and 3. Because the estimated parameter $(\hat{\lambda}_0, \hat{\lambda}_1')$ in the ET calibration estimator (16) has some sampling variability, variance estimation method should take into account of this sampling variability of these estimated parameters. In this case, variance estimation can be often obtained by a linearization method or by a replication method (Wolter, 2007). For the discussion of the linearization method, let the variance of the HT estimator (1) be consistently estimated by

$$\hat{V}(\hat{Y}_d) = \sum_{i \in A} \sum_{j \in A} \Omega_{ij} y_i y_j. \quad (32)$$

The linearization variance estimator for the ET estimator can be obtained by the linearization variance formula for the regression estimator, as in Deville and Särndal (1992), using the asymptotic equivalence between the ET calibration estimator and the regression estimator, as shown in Theorem 2. Specifically, if the population size N is known, a linearization variance esti-
The variance of the IVET estimator in (26) can be written as

$$
\hat{V} \left(\hat{Y}_{IVET} \right) = \sum_{i \in A} \sum_{j \in A} \Omega_{ij} g_i g_j \hat{e}_i \hat{e}_j
$$

(33)

where $$\Omega_{ij}$$ are the coefficients of the variance estimator in (32), $$g_i = w_i / d_i$$ is the weight adjustment factor, and $$\hat{e}_i = y_i - \bar{Y}_d - (x_i - \bar{X}_d)' \hat{B}_z$$, where $$\hat{B}_z$$ is defined in (30). The choice of $$z_i = x_i$$ in (33) gives the linearized variance estimator for the ET estimator in (16). Consistency of the variance estimator (33) can be found in Kim and Park (2010).

For the one-step ET estimator, a replication method can be easily implemented. Let the replication variance estimator be of the form

$$
\hat{V}_{rep} = \sum_{k=1}^{L} c_k \left(\hat{Y}^{(k)}_d - \hat{Y}_d \right)^2,
$$

(34)

where $$L$$ is the number of replication, $$c_k$$ is the replication factor associated with replicate $$k$$, $$\hat{Y}^{(k)}_d = \sum_{i \in A} d_i^{(k)} y_i$$, and $$d_i^{(k)}$$ is the $$k$$-th replicate of the design weight $$d_i$$. For example, the replication variance estimator (34) includes the jackknife and the bootstrap (see Rust and Rao, 1996). Assume that the replication variance estimator (34) is a consistent estimator for the variance of $$\hat{Y}_d$$. The $$k$$-th replicate of the one-step ET estimator can be computed by

$$
\hat{Y}^{(k)}_{ET(1)} = \sum_{i \in A} d_i^{(k)} \exp \left(\hat{\lambda}^{(k)}_0' + \hat{\lambda}^{(k)}_1 z_i \right) y_i
$$

(35)

where

$$
\hat{\lambda}^{(k)}_{1(1)} = \left\{ \sum_{i \in A} d_i^{(k)} (x_i - \bar{X}_d^{(k)}) (z_i - \bar{Z}_d^{(k)})' / \hat{N}_d^{(k)} \right\}^{-1} \left(X / \hat{N}^{(k)} - \bar{X}_d^{(k)} \right),
$$

and

$$
\hat{N}^{(k)} = \left\{ \begin{array}{ll}
N & \text{if } \hat{N} = N \\
\hat{N}_d^{(k)} = \sum_{i \in A} d_i^{(k)} & \text{if } \hat{N} = \hat{N}_d
\end{array} \right.
$$
\[
\left(\bar{X}_d^{(k)}, \bar{Z}_d^{(k)} \right) = \frac{\sum_{i \in A} d_i^{(k)} (x_i, z_i)}{\sum_{i \in A} d_i^{(k)}},
\]

and

\[
\exp \left(\hat{\lambda}_{0(1)}^{(k)} \right) = \frac{\hat{N}}{\sum_{i \in A} d_i^{(k)} \exp \left(z_i' \hat{\lambda}_{1(1)}^{(k)} \right)}.
\]

The replication variance estimator defined by

\[
\hat{V}_{rep} = \sum_{k=1}^{L} c_k \left(\hat{Y}_{ET}^{(k)} - \hat{Y}_{ET} \right)^2,
\]

where \(\hat{Y}_{ET}^{(k)} \) is defined in (35), can be used to estimate the variance of the ET calibration estimator in (26).

5 Simulation study

To study the finite sample performance of the proposed estimators, we performed a limited simulation study. In the simulation, two finite populations of size \(N = 10,000 \) were independently generated. In population A, the finite population is generated from an infinite population specified by

\[
x_i \sim \exp(1) + 1; \quad y_i = 3 + x_i + x_i e_i, \quad e_i \mid x_i \sim N(0,1); \quad z_i \mid (x_i, y_i) \sim \chi^2(1) + |y_i|.
\]

In population B, \((x_i, e_i, z_i) \) are the same as in population A but \(y_i = \left(5 - 1/\sqrt{8}\right) + 1/\sqrt{8} (x_i - 2)^2 + e_i \). The auxiliary variable, \(x_i \), is used for calibration and \(z_i \) is the measure of size used for unequal probability sampling. From both of the finite populations generated, \(M = 10,000 \) Monte Carlo samples of size \(n \) were independently generated under two sampling schemes described below. The parameter of interest is the population mean of \(y \) and we assume that the population size \(N \) is known.

The simulation setup can be described as a \(2 \times 2 \times 8 \times 2 \) factorial design with four factors. The factors are (a) two types of finite populations, (b) Sampling
mechanism: simple random sampling and probability proportional to size \((z_i)\) sampling with replacement, (c) Calibration method: no calibration, the regression estimator, the EL method in (6) with \(t = 1\) and \(t = 10\), the \(t\)-step ET method in (21) with \(t = 1\) and \(t = 10\), and the IVET method (26) with \(t = 1\) and \(t = 10\), (d) sample size: \(n = 100\) and \(n = 200\). Since \(N\) is assumed to be known, the calibration estimators are computed to satisfy \(\sum_{i=1}^{n} w_i (1, x_i) = (1, \bar{X}_N)\) in both populations. For the IVET method (26), the instrumental variable \(z_i\) is created using the definitions in (28) with threshold \(C = 3\).

Using the Monte Carlo samples generated as above, the biases and the mean squared errors of the eight estimators of the population mean of \(y\), the variable of interest, were computed and are presented in Table 2. The calibration estimators are biased but the bias is small if the regression model holds or the sample size is large. In population A, the linear regression model holds and the regression estimator is efficient in terms of mean squared errors. However, the regression estimator is not efficient in population B because the model used for the regression estimator is not a good fit. The seven calibration estimators show similar performances for the larger sample size. The 10-step IVET estimator performs as well as the regression estimator in population A, and it shows slightly better performance than the other six calibration estimators. In population B, the 10-step IVET estimator performs the best among the calibration estimators considered.

< Table 2 around here. >

In addition to point estimation, variance estimation was also considered. We considered only the variance estimation for the \(t\)-step ET estimators and IVET estimators. The linearization variance estimator in (33) and the
replication variance estimator in (36) were computed for each estimator in each sample. In the replication method, the jackknife method was used by deleting one element for each replication. The relative biases of the variance estimators were computed by dividing the Monte Carlo bias of the variance estimator by the Monte Carlo variance. The Monte Carlo relative biases of the linearization variance estimators and the replication variance estimators are presented in Table 3. The theoretical relative bias of the variance estimators is of order $o(1)$, which is consistent with the simulation results in Table 3. The linearization variance estimator slightly underestimates the true variance because it ignores the second order term in the Taylor linearization. The replication variance estimator shows slight positive bias in the simulation. The biases of the variance estimators are generally smaller in absolute values in population A because the linear model holds. In population B, variance estimators for the IVET estimator are less biased than those for the ET estimator because of less extreme weights used by the IVET estimator.

< Table 3 around here. >

6 Concluding remarks

We have considered the problem of estimating Y with auxiliary information of the form $E \{ U(\mathbf{X}) \} = 0$ with some known function $U(\cdot)$. The class of the linear estimators of the form $\hat{Y} = \sum_{i \in A} w_i y_i$ with $\sum_{i \in A} w_i \{ 1, U(x_i) \} = (\hat{N}, 0)$ and $w_i > 0$ is considered. If the density $f(\mathbf{x}; \eta)$ of X is known up to $\eta \in \Omega$, then an efficient estimation can be implemented using the estimated
importance weight
\[w_i \propto d_i \frac{f(x_i; \eta_{0,N})}{f(x_i; \hat{\eta})}, \]
where \(d_i \) are the initial weights and where \(\eta_{0,N} \) and \(\hat{\eta} \) are the maximum likelihood estimators of \(\eta \) based on the population and the sample, respectively. If the parametric form of \(f(x; \eta) \) is unknown, then the exponential tilting weights of the form
\[w_i(\lambda) \propto \exp\left\{ \lambda' U(x_i) \right\} \]
can be used, where \(\lambda \) is determined to satisfy
\[\sum_{i \in A} w_i(\lambda) U(x_i) = 0. \] (37)
If a solution to (37) exists, it can be expressed as the limit of the form
\[w_i(t) \propto \prod_{s=0}^{t-1} \exp\left\{ -\hat{U}'(s) \hat{\Sigma}_{aa}^{-1}(s) U(x_i) \right\} \] (38)
where \(\hat{U}(s) = \sum_{i \in A} w_i(s) U(x_i) \), \(\hat{\Sigma}_{aa}(t) = \sum_{i \in A} w_i(t) \{ U(x_i) - \hat{U}(t) \} \otimes^2 \), \(\hat{U}(t) = \sum_{i \in A} w_i(t) U(x_i) / \sum_{i \in A} w_i(t) \) with the initial weight \(w_i(0) = d_i(\hat{N}/\hat{N}_d) \). If the solution to condition (37) does not exist, we can still use the weights in (38), but the equality must be relaxed. Instead, approximate equality will be satisfied in (37) in the sense that \(\sum_{i \in A} w_i(t) U(x_i) \) converges to zero much faster than \(\sum_{i \in A} w_i(0) U(x_i) \) for \(t \geq 1 \). Approximate equality in (37) is called the approximate calibration condition.

The estimators \(\hat{Y}(t) = \sum_{i \in A} w_i(t) y_i \) that use the \(t \)-step ET weights in (38), including the one-step estimator \(\hat{Y}(1) \), are asymptotically equivalent to the regression estimator of the form
\[\hat{Y}_{reg} = \hat{Y}(0) - \hat{U}'(0) \hat{\Sigma}_{aa(0)}^{-1} \hat{\Sigma}_{ay(0)}, \]
where \(\hat{Y}(0) = \sum_{i \in A} w_i(0)y_i \) and \(\hat{\Sigma}_{ay}(0) = \sum_{i \in A} w_i(0) \{ U(x_i) - \bar{U}(0) \} y_i \). Unlike the regression estimator, the weights of the proposed method are always nonnegative. Furthermore, using the instrumental variable technique in Section 3, the weights are bounded above. Suitable choice of the instrumental variable also improves the efficiency of the resulting calibration estimator.

The exponential tilting calibration method is asymptotically equivalent to the empirical likelihood calibration method but it is more attractive computationally in the sense that the partial derivatives are not required in the iterative computation. Because the computation is simple, the variance of the proposed estimator can be easily estimated using a replication method, as discussed in Section 4. Further investigation in this direction, including interval estimation, can be a topic of future research.

Acknowledgement

The author wishes to thank Minsun Kim for computational support and two anonymous referees and the associated editor for very helpful comments that greatly improved the quality of the paper. This research was partially supported by a Cooperative Agreement NRCS 68-3A75-4-122 between the US Department of Agriculture Natural Resources Conservation Service and Iowa State University. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the USDA Natural Resources Conservation Service.
Appendix

A. Assumptions and proof of Theorem 1

We first assume the following regularity conditions:

[A-1] The density \(f(x; \eta) \) is twice differentiable with respect to \(\eta \) for every \(x \) and satisfy

\[
\left| \frac{\partial^2 f(x; \eta)}{\partial \eta_i \partial \eta'_j} \right| \leq K(x)
\]

for function \(K(x) \) such that \(E\left\{ K(x) \right\} < \infty \), in a neighborhood of \(\eta_{0,N} \).

[A-2] The pseudo maximum likelihood estimator \(\hat{\eta} \) satisfies

\[
\sqrt{n} (\hat{\eta} - \eta_{0,N}) = O_p(1).
\]

[A-3] The matrix \(E\left\{ s(\eta_{0,N}) \otimes^2 \right\} \) exists and is nonsingular, where \(s(\eta_{0,N}) = \partial \ln f(x_i; \eta) / \partial \eta \big|_{\eta = \eta_{0,N}} \).

To prove Theorem 1, write

\[
g_i(\eta) = \frac{f(x_i; \eta_{0,N})}{f(x_i; \eta)},
\]

and \(w_i(\eta) = d_i g_i(\eta) \). The estimated importance weight in (8) can be written \(w_i = w_i(\hat{\eta}) \). Taking a Taylor expansion of \(N^{-1} \sum_{i \in A} d_i s_i(\hat{\eta}) = 0 \) around \(\eta_{0,N} \) leads to

\[
0 = \frac{1}{N} \sum_{i \in A} d_i s_i(\eta_{0,N}) + \left\{ \frac{\partial}{\partial \eta'} \frac{1}{N} \sum_{i \in A} d_i s_i(\eta_{0,N}) \right\} (\hat{\eta} - \eta_{0,N}) + o_p\left(|\hat{\eta} - \eta_{0,N}| \right).
\]

Using

\[
\frac{1}{N} \frac{\partial}{\partial \eta} \sum_{i \in A} d_i s_i(\eta) = \frac{1}{N} \sum_{i \in A} d_i \frac{\partial^2 f(x_i; \eta)}{\partial \eta \partial \eta'} \frac{f(x_i; \eta)}{f(x_i; \eta)} - \frac{1}{N} \sum_{i \in A} d_i \left\{ \frac{\partial f(x_i; \eta)}{f(x_i; \eta)} \right\}^2.
\]

(A1)
The first term on the right side of (A1) converges to \(\int \{ \partial^2 f (x; \eta) / \partial \eta \partial \eta' \} \, dx \) which equals to zero by the dominated convergence theorem with [A1]. The second term converges to \(E \{ s (\eta_{0,N})^{\otimes 2} \} \). Thus, by [A-2],

\[
S_{0d} \equiv \frac{1}{N} \sum_{i \in A} d_i s_i (\eta_{0,N}) = O_p \left(n^{-1/2} \right)
\]

and

\[
\hat{\eta} - \eta_{0N} = \Sigma^{-1} S_{0d} + o_p \left(n^{-1/2} \right).
\]

Now, taking a Taylor expansion of \(N^{-1} \hat{Y}_w = N^{-1} \sum_{i \in A} w_i (\hat{\eta}) y_i \) around \(\eta = \eta_{0,N} \) leads to

\[
\frac{\hat{Y}_w}{N} = \frac{\hat{Y}_d}{N} + \left\{ \frac{\partial}{\partial \eta} \frac{1}{N} \sum_{i \in A} w_i (\eta_{0,N}) y_i \right\} \left(\hat{\eta} - \eta_{0,N} \right) + o_p \left(|\hat{\eta} - \eta_{0,N}| \right)
\]

by the uniform continuity of \(\partial \{ \sum_{i \in A} w_i (\eta) y_i \} / \partial \eta \) around \(\eta_{0,N} \). Now, using

\[
\frac{\partial}{\partial \eta} g_i (\eta) = -\frac{f (x_i; \eta)}{f (x_i; \eta)} \times \frac{\partial f (x_i; \eta)}{\partial \eta} = -g_i (\eta) \times s_i (\eta),
\]

where \(s_i (\eta) = \partial \ln f (x_i; \eta) / \partial \eta \), we have

\[
\frac{\partial}{\partial \eta} \sum_{i \in A} w_i (\eta) y_i = -\sum_{i \in A} w_i (\eta) s_i (\eta) y_i.
\]

Using \(w_i (\eta_{0,N}) = d_i \) and writing \(s_i (\eta_{0,N}) = s_{i0} \), we have, by (A2),

\[
\frac{\partial}{\partial \eta} \frac{1}{N} \sum_{i \in A} w_i (\eta_{0,N}) y_i = -\frac{1}{N} \sum_{i \in A} d_i s_{i0} y_i = -\hat{\Sigma}_{sy} + O_p \left(n^{-1/2} \right).
\]

Using (A5) and (A3) in (A4), result (9) is obtained.

B. Proof of Theorem 2

Write

\[
\hat{\theta} (\lambda_1) = \frac{\sum_{i \in A} d_i m_i (\lambda_1) y_i}{\sum_{i \in A} d_i m_i (\lambda_1)},
\]
where \(m_i(\lambda_1) = \exp(\lambda_i' x_i) \). Note that \(\hat{Y}_{ET(t)} = \hat{N} \hat{\theta}(\hat{\lambda}_{1(t)}) \) and \(\hat{\lambda}_{1(t)} \) is defined in (19). By a Taylor expansion of \(\hat{\theta}(\hat{\lambda}_{1(t)}) = \hat{N}^{-1} \hat{Y}_{ET(t)} \) around \(\lambda_1 = 0 \) and by the continuity of the partial derivatives of \(\hat{\theta}(\lambda_1) \), we have

\[
\hat{\theta}(\hat{\lambda}_{1(t)}) = \hat{\theta}(0) + \dot{\hat{\theta}}(0)' \left(\hat{\lambda}_{1(t)} - 0 \right) + o_p \left(\left| \hat{\lambda}_{1(t)} - 0 \right| \right),
\]

(B1)

where \(\dot{\hat{\theta}}(\lambda_1) = \partial \hat{\theta}(\lambda_1) / \partial \lambda_1 \). Because \(\hat{\lambda}_{1(t)} \) converges in quadratic order and the one-step estimator satisfies \(\hat{\lambda}_{1(1)} = O_p(n^{-1/2}) \), equation (22) can be written as

\[
\hat{\lambda}_{1(t)} = \left\{ \hat{N}^{-1}_d \sum_{i \in A} d_i (x_i - \bar{X}_d)^\otimes 2 \right\}^{-1} \left(\hat{N}^{-1}_d X - \bar{X}_d \right) + o_p(n^{-1/2}).
\]

(B2)

Note that

\[
\hat{\theta}(\lambda_1) = \left\{ \sum_{i \in A} d_i m_i(\lambda_1) \right\}^{-1} \sum_{i \in A} d_i \dot{m}_i(\lambda_1) \left\{ y_i - \hat{\theta}(\lambda_1) \right\}
\]

where \(\dot{m}_i(\lambda_1) = \partial m_i(\lambda_1) / \partial \lambda_1 \). Using \(m_i(0) = 1 \) and \(\dot{m}_i(0) = x_i \), we have

\[
\hat{\theta}(0) = \hat{Y}_d / \hat{N}_d
\]

and

\[
\dot{\hat{\theta}}(0) = \hat{N}^{-1}_d \sum_{i \in A} d_i (x_i - \bar{X}_d) y_i.
\]

(B3)

Therefore, inserting (B2) and (B3) into (B1), we have

\[
\hat{\theta}(\hat{\lambda}_{1(t)}) = \hat{Y}_d \hat{N}_d^{-1} \left(X / N - \bar{X}_d \right)' \left\{ \sum_{i \in A} d_i (x_i - \bar{X}_d)^\otimes 2 \right\}^{-1} \sum_{i \in A} d_i (x_i - \bar{X}_d) y_i + o_p(n^{-1/2}),
\]

which proves (23).

References

Table 1. An example of calibration weights with a sample of size $n = 5$.

<table>
<thead>
<tr>
<th>Method</th>
<th>\hat{X}_N</th>
<th>x_i</th>
<th>\hat{X}_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reg.</td>
<td>3.0</td>
<td>0.200 0.200 0.200 0.200 0.200</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>-0.100 0.050 0.200 0.035 0.500</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>-0.400 -0.100 0.200 0.500 0.800</td>
<td>6.0</td>
</tr>
<tr>
<td>EL</td>
<td>3.0</td>
<td>0.200 0.200 0.200 0.200 0.200</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>0.033 0.043 0.063 0.115 0.746</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>N/A N/A N/A N/A N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>ET ($t = 1$)</td>
<td>3.0</td>
<td>0.200 0.200 0.200 0.200 0.200</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>0.027 0.057 0.100 0.255 0.540</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>0.002 0.009 0.039 0.173 0.777</td>
<td>4.7</td>
</tr>
<tr>
<td>ET ($t = 10$)</td>
<td>3.0</td>
<td>0.200 0.200 0.200 0.200 0.200</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>0.009 0.027 0.078 0.227 0.659</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>0.000 0.000 0.000 0.001 0.999</td>
<td>5.0</td>
</tr>
<tr>
<td>IVET ($t = 1$)</td>
<td>3.0</td>
<td>0.200 0.200 0.200 0.200 0.200</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>0.030 0.047 0.121 0.309 0.493</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>0.003 0.006 0.041 0.267 0.683</td>
<td>4.6</td>
</tr>
<tr>
<td>IVET ($t = 10$)</td>
<td>3.0</td>
<td>0.200 0.200 0.200 0.200 0.200</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>0.007 0.015 0.066 0.294 0.618</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>0.000 0.000 0.000 0.087 0.913</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Reg., Regression estimator; EL, empirical likelihood; ET, exponential tilting; IVET, instrumental variable exponential tilting; N/A, Not applicable.
Table 2. Monte Carlo Biases and Monte Carlo Mean squared errors of the point estimators for the mean of \(y \), based on 10,000 Monte Carlo samples.

<table>
<thead>
<tr>
<th>Population</th>
<th>Sample Size</th>
<th>Estimator</th>
<th>SRS</th>
<th>PPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100</td>
<td>No Calibration</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regression estimator</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL estimator (t=1)</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL estimator (t=10)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ET estimator (t=1)</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ET estimator (t=10)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IVET estimator (t=1)</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IVET estimator (t=10)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>No Calibration</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regression estimator</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL estimator (t=1)</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL estimator (t=10)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ET estimator (t=1)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ET estimator (t=10)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IVET estimator (t=1)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IVET estimator (t=10)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>B</td>
<td>100</td>
<td>No Calibration</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regression estimator</td>
<td>-0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL estimator (t=1)</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL estimator (t=10)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ET estimator (t=1)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ET estimator (t=10)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IVET estimator (t=1)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IVET estimator (t=10)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>No Calibration</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regression estimator</td>
<td>-0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL estimator (t=1)</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL estimator (t=10)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ET estimator (t=1)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ET estimator (t=10)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IVET estimator (t=1)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IVET estimator (t=10)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

SRS, simple random sampling; PPS, probability proportional to size sampling; MSE, mean squared error; EL, empirical likelihood; ET, exponential tilting; IVET, instrumental-variable exponential tilting.
Table 3. Monte Carlo Relative Biases of the variance estimators, based on 10,000 Monte Carlo samples.

<table>
<thead>
<tr>
<th>Population</th>
<th>Sample size</th>
<th>Estimator</th>
<th>Linearization</th>
<th>Replication</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100</td>
<td>ET (t=1)</td>
<td>-7.02</td>
<td>10.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ET (t=10)</td>
<td>-4.91</td>
<td>5.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IVET (t=1)</td>
<td>-5.28</td>
<td>7.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IVET (t=10)</td>
<td>-4.11</td>
<td>4.96</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>ET (t=1)</td>
<td>-3.97</td>
<td>3.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ET (t=10)</td>
<td>-2.93</td>
<td>2.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IVET (t=1)</td>
<td>-3.35</td>
<td>2.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IVET (t=10)</td>
<td>-2.72</td>
<td>1.62</td>
</tr>
<tr>
<td>B</td>
<td>100</td>
<td>ET (t=1)</td>
<td>-7.64</td>
<td>10.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ET (t=10)</td>
<td>-5.98</td>
<td>7.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IVET (t=1)</td>
<td>-5.77</td>
<td>4.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IVET (t=10)</td>
<td>-5.44</td>
<td>5.17</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>ET (t=1)</td>
<td>-2.41</td>
<td>5.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ET (t=10)</td>
<td>-1.29</td>
<td>4.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IVET (t=1)</td>
<td>-1.39</td>
<td>2.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IVET (t=10)</td>
<td>-1.15</td>
<td>2.04</td>
</tr>
</tbody>
</table>

SRS, simple random sampling; PPS, probability proportional to size sampling; ET, exponential tilting; IVET, instrumental-variable exponential tilting.