You may consult with other human beings on these problems
Due date: December 17, 2008

Each problem is worth 10 points unless otherwise stated.

1. Prove that a closed set is nowhere dense if and only if it contains no open set. Prove that E is nowhere dense if and only if for every open set O there is a nonempty ball in $O - E$.

2. Prove that if A, B are closed disjoint subsets of a metric space and one of them, (say A), is compact, then $\rho(A, B) > 0$.

3. If A, B are nowhere dense in X, then so is $A \cup B$. If A is nowhere dense in X and B is nowhere dense in Y, then $A \times B$ is nowhere dense in $X \times Y$.

4. If X, Y are first category, so is $X \times Y$. Prove that if $\{E_n\}$ is a sequence of first category sets, so is their union.

5. Definition: A point $x \in X$ is isolated if it is not a limit point of X. Prove that a space of the first category has no isolated points. Prove that a complete, countable metric space must have isolated points.

6. Show that on $[0, 1]$, there is a nowhere dense closed set having Lebesgue measure $1 - 1/n$. Construct a first category set in $[0, 1]$ with Lebesgue measure one.

7. 25 pts. Work problem 38, p 161 of the text.