A Genetic Algorithm Approach to Optimize Planning of Food Fortification

2011 Joint Statistical Meetings

Dave Osthus

August 2, 2011
Outline

1. Nutrition Background
2. Food Fortification Background
3. Optimal Fortification Planning Approach
4. Genetic Algorithms
5. Results via an Example
Usual Daily Nutrient Intake

- **Usual Daily Nutrient Intake**: The long run average of daily nutrient consumption.

- Reliable estimation of usual daily nutrient intake distributions has been thoroughly explored (National Research Council, 1986; Nusser et al., 1996)

- Usual daily nutrient intake distributions are used to:
 1. Identify populations with nutrient inadequacies.
 2. Develop programs to combat these inadequacies.
Identification of Nutrient Inadequacies

- **Prevalence of nutrient inadequacy** \((\alpha_{PoI} \in [0, 1]) \): Estimated as the proportion of individuals in a population with usual daily nutrient consumption **below** the Estimated Average Requirement (EAR).
 - **EAR**: Daily nutrient intake level that is estimated to meet the needs of half the healthy individuals in a specified age and gender population.

- **Prevalence of nutrient excess** \((\alpha_{PoE} \in [0, 1]) \): Estimated as the proportion of individuals in a population with usual daily nutrient consumption **above** the Tolerable Upper Limit (UL).
 - **UL**: Highest level of nutrient consumption regarded as safe for individuals in a specified age and gender population.
Development of Programs to Combat Nutrient Inadequacies

- Prevalence of nutrient inadequacy and/or excess goals are set ($\beta_{PoI} \in [0, 1]$ and $\beta_{PoE} \in [0, 1]$, respectively).
- **Food Fortification Plan**: An intervention where specific amounts of nutrient are added to specific food vehicles.
 - Candidate food vehicles and fortification limits are selected and set by food scientist.
- In practice, if the fortification plan results in $\alpha_{PoI} \approx \beta_{PoI}$ and/or $\alpha_{PoE} \approx \beta_{PoE}$ and the cost is reasonable, then the plan is considered successful.
- **Main Question**: How do we identify the “best” fortification plan?
 - “Best” plan is the fortification plan that meets the prevalence of inadequacy/excess goals for minimal cost.
Optimization Function

Notation

- γ_k: Additional amount of nutrient added to one unit of food vehicle k, $k \in \{1, 2, \ldots, K\}$ and $\gamma_k \in [0, \text{fortification limit for food vehicle } k]$.
- c_k: Cost to add one unit of nutrient to one unit of food vehicle k, $c_k \geq 0$.
- λ: A large number (e.g. 1,000,000). A penalty for selecting a plan that does not meet the prevalence of inadequacy/excess goals.

Optimization Function

$$f(\gamma_1, \gamma_2, \ldots, \gamma_K) = \sum_{k=1}^{K} (c_k \ast \gamma_k) + \lambda[|\alpha_{PoI} - \beta_{PoI}| + |\alpha_{PoE} - \beta_{PoE}|]$$

Note

$$\frac{\partial f}{\partial \gamma_k}(\gamma_1, \gamma_2, \ldots, \gamma_K)$$ is not analytically tractable. Numerical optimization method utilized.
A genetic algorithm is a stochastic optimization algorithm that attempts to mimic the evolutionary process as demonstrated in nature by biological individuals.

- Few restrictions.
- Results get better as run time increases.
Data: Ugandan children between 6 and 24 months of age.

- **Nutrient:** Vitamin A
- **Food Vehicles:** Sugar, Vegetable Oil, Wheat Flour and Maize Flour
- **Pre-fortification:** $\alpha_{PoI} = 0.93$ and $\alpha_{PoE} = 0.00$
Special Thanks To:

- Dr. Alicia Carriquiry
- Todd Campbell
- Dr. Omar Dary
Questions?

(dosthus@iastate.edu)