A frequency domain empirical likelihood for short- and long-range dependence

Short Title: Spectral empirical likelihood

Daniel J. Nordman & Soumendra N. Lahiri
Dept. of Statistics
Iowa State University
Ames, IA 50011 USA

Abstract

This paper introduces a version of empirical likelihood based on the periodogram and spectral estimating equations. This formulation handles dependent data through a data transformation (i.e., Fourier transform) and is developed in terms of the spectral distribution rather than a time domain probability distribution. The asymptotic properties of frequency domain empirical likelihood are studied for linear time processes exhibiting both short- and long-range dependence. The method results in likelihood ratios which can be used to build nonparametric, asymptotically correct confidence regions for a class of normalized (or ratio) spectral parameters, including autocorrelations. Maximum empirical likelihood estimators are possible as well as tests of spectral moment conditions. The methodology can be applied to several inference problems, such as Whittle estimation and goodness-of-fit testing.

1 Introduction

The main contribution of this paper is a new formulation of empirical likelihood (EL) for inference with two fundamentally different types of dependent data: time series exhibiting either short-range dependence (SRD) or long-range dependence (LRD). Let \(\{X_t\}, t \in \mathbb{Z}, \) be a
stationary sequence of random variables with mean μ and spectral density f on $\Pi = [-\pi, \pi]$ where

$$f(\lambda) \sim C(\alpha)|\lambda|^{-\alpha}, \quad \lambda \to 0 \quad (1)$$

for $\alpha \in [0, 1)$ and a constant $C(\alpha) > 0$ involving α (with \sim indicating the terms have a ratio of one in the limit). When $\alpha = 0$, we classify the process $\{X_t\}$ as short-range dependent (SRD). For $\alpha > 0$, the process will be called long-range dependent (LRD). This classification resembles the one from [26] and encompasses the formulation of LRD described in [4, 40].

Originally proposed by [33, 34] for independent samples, EL allows for nonparametric likelihood-based inference with a broad range of applications [36]. An important benefit of EL inference is that confidence regions for parameters may be calibrated through log-likelihood ratios, without requiring any direct estimates of variance or skewness [20]. However, a difficulty with extending EL methods to dependent data is then to ensure that “correct” variance estimation occurs automatically within EL ratios under the data dependence structure. This is an important reason why the EL version for iid data from [34] does not apply to dependent data (see [24], p. 2085).

Recent extensions of EL to time series in [24, 31] have relied exclusively on a SRD structure with rapidly decreasing process correlations. In particular, [24] provided a breakthrough formulation of EL for weakly dependent data based on data blocks rather than individual observations. Under SRD, the resulting blockwise EL ratios correctly perform variance estimation of sample means within their mechanics. Data blocking has also proven to be crucial in extending other nonparametric likelihoods to weakly dependent processes, such as the block bootstrap and resampling methods described in [27], Chapter 2.

In comparison to weak dependence, the rate of decay of the covariance function $r(k) = \text{Cov}(X_j, X_{j+k})$ is characteristically much slower under strong dependence $\alpha > 0$, namely:

$$r(k) \sim \tilde{C}(\alpha)k^{-(1-\alpha)}, \quad k \to \infty, \quad (2)$$

with a constant $\tilde{C}(\alpha) > 0$, which is an alternative representation of LRD (with equivalence to (1) if the covariances converge quasimonotonicly to zero; see p. 1632 of [40]). This autocovariance behavior implies that statistical procedures developed for SRD may not be applicable under LRD, often due to complications with variance estimation. For example, the moving block bootstrap is known to be invalid under strong dependence for inference on the process mean $E X_t = \mu$ [25], partly because (2) implies that the variance $\text{Var}(\bar{X}_n) = O(n^{-1+\alpha})$ of a size n sample mean exhibits a slower, unknown rate of decay compared to the $O(n^{-1})$ rate associated with SRD data. For this reason, the blockwise EL formulation of [24] will also break down under strong dependence for inference on the mean.

In this paper, we formulate an EL based on the periodogram combined with certain
estimating equations. Using this data transformation to weaken the underlying dependence structure, the resulting frequency domain empirical likelihood (FDEL) provides a common tool for nonparametric inference on both SRD and LRD time series. Because this EL version involves the spectral distribution of a time process rather than a time domain probability distribution, inference is restricted to a class of normalized spectral parameters described in Section 2. The frequency domain bootstrap (FDB) of [12], developed for SRD, targets the same class of parameters. Hence, for parameters not defined in terms of the spectral density (e.g., the process mean μ), the FDEL is inapplicable while the time domain blockwise EL in [24] may still be valid if the process exhibits SRD (i.e., valid for a larger class of parameters under weak dependence).

Our main result is the asymptotic distribution of FDEL ratio statistics, which are shown to have limiting chi-square distributions under both SRD and LRD for setting confidence regions. That is, FDEL shares the strength of EL methods to incorporate “correct” variance estimation for spectral parameter inference automatically in its mechanics. For normalized spectral parameters where both the FDB and blockwise EL may be applicable under SRD (e.g., autocorrelations), the FDEL requires no kernel density estimates of f (as with the FDB) and no block selection (as with the blockwise EL). Our FDEL results also refine some EL theory given in [31], who proposed periodogram-based EL confidence regions for Whittle-type estimation with SRD linear processes. We additionally consider FDEL tests, based on maximum EL estimation, which are helpful for assessing both parameter conjectures and the validity of (spectral) moment conditions, as in the independent data EL formulation [34, 38].

The methodology presented here is applicable to linear processes with spectral densities satisfying (1), which includes two common models for LRD processes: the fractional Gaussian processes of [29] with spectral density

$$f_{H,\sigma^2}(\lambda) = \frac{4\sigma^2 \Gamma(2H - 1)}{(2\pi)^{2H+2}} \cos(\pi H - \pi/2) \sin^2(\lambda/2) \sum_{k=-\infty}^{\infty} |\lambda/(2\pi) + k|^{-1-2H}, \quad \lambda \in \Pi,$$

(3)

$1/2 < H < 1$, and the fractional autoregressive integrated moving average (FARIMA) processes of [1, 19, 22] with spectral density

$$f_{d,\rho,\varrho,\sigma^2}(\lambda) = \frac{\sigma^2}{2\pi} |1 - e^{i\lambda}|^{-2d} \left(\sum_{j=0}^{p} \rho_j (e^{i\lambda})^j \sum_{j=0}^{q} \varrho_j (e^{i\lambda})^j \right)^2, \quad \lambda \in \Pi,$$

(4)

based on parameters $0 < d < 1/2$, $\rho = (\rho_1, \ldots, \rho_p)$, $\varrho = (\varrho_1, \ldots, \varrho_q)$ with $\rho_0 = \varrho_0 = 1$ and $i = \sqrt{-1}$. These models fulfill (1) with $\alpha = 2H - 1$ and $\alpha = 2d$, respectively.

The rest of the paper is organized as follows. Section 2 describes the role of spectral estimating equations for FDEL inference and several examples are given. In Section 3, we
explain the construction of EL in the frequency domain. Section 4 contains the Assump-
tions and the main results on the distribution of FDEL log-ratios for confidence region
estimation and simple hypothesis testing. In Section 5, we consider maximum EL estima-
tion in the frequency domain. We describe the application of FDEL to Whittle estimation
in Section 6, while Section 7 considers goodness-of-fit testing with FDEL. Section 8 offers
some conclusions. Proofs of the results are given in Sections 9 and 10.

2 Spectral estimating equations

Consider inference on a parameter \(\theta \in \Theta \subset \mathbb{R}^p \) based on a time stretch \(X_1, \ldots, X_n \). Following the EL framework of [38, 39] with iid data, we suppose that information about \(\theta \) exists through a system of general estimating equations. However, we will use the process spectral distribution to define moment conditions as follows. Let

\[
G_\theta(\lambda) = (g_{1,\theta}(\lambda), \ldots, g_{r,\theta}(\lambda))^\prime : \Pi \times \Theta \to \mathbb{R}^r
\]

(5)
denote a vector of even, estimating functions with \(r \geq p \). For the case \(r > p \), the above functions are said to be “overidentifying” for \(\theta \). We assume that \(G_\theta \) satisfies the spectral moment condition

\[
\int_0^\pi G_{\theta_0}(\lambda)f(\lambda)d\lambda = M
\]

(6)
for some known \(M \in \mathbb{R}^r \) at the true value \(\theta_0 \) of the parameter. As distributional results in Section 4 indicate, we will typically require \(M = 0 \), which places some restrictions on the types of spectral parameters considered. However, FDEL framework is valid for estimating normalized spectral means: \(\theta = \int_0^\pi Gf(\lambda)d\lambda/ \int_0^\pi f(\lambda)d\lambda \) based on a vector function \(G \). The FDB targets the same parameters under SRD and [12] comments on the importance, and often complete adequacy, of population information expressed in this ratio form. The FDEL construction in Section 3 combines the periodogram with the estimating equations in (6).

2.1 Examples

We provide a few examples of useful estimating functions for inference, some of which sat-
ify (5) with \(M = 0 \).

Example 1: Autocorrelations. Consider interest in the autocorrelation function \(\rho(\cdot) \) at arbitrary lags \(m_1, \ldots, m_p \); that is, \(\theta = (\rho(m_1), \ldots, \rho(m_p))^\prime \) where

\[
\rho(m) = r(m)/r(0) = \int_0^\pi \cos(m\lambda)f(\lambda)d\lambda/ \int_0^\pi f(\lambda)d\lambda, \quad m \in \mathbb{Z}.
\]
One can select $G_\theta(\lambda) = (\cos(m_1 \lambda), \ldots, \cos(m_p \lambda))' - \theta$ for autocorrelation inference, fulfilling (6) with $M = 0 \in \mathbb{R}^p$ and $r = p$.

Example 2: Spectral distribution function. For $\omega \in [0, \pi]$, denote the spectral distribution function as $F(\omega) = \int_0^\omega f(\lambda) d\lambda$. Suppose $\theta = (F(\tau_1)/F(\pi), \ldots, F(\tau_p)/F(\pi))'$ for some $\tau_1, \ldots, \tau_p \in (0, \pi)$. This normalized parameter θ often sufficiently characterizes the spectral distribution F for testing purposes [10]. For inference on θ, we can pick $G_\theta(\lambda) = (\mathbb{1}\{\lambda \leq \tau_1\}, \ldots, \mathbb{1}\{\lambda \leq \tau_p\})' - \theta$ where $\mathbb{1}\{\cdot\}$ denotes the indicator function. Then (6) holds with spectral mean $M = 0 \in \mathbb{R}^p$.

Example 3: Goodness-of-fit tests. There has been increasing interest in frequency domain-based tests to assess model adequacy [2, 37]. Consider a test involving a simple null hypothesis $H_0 : f = f_0$ against an alternative $H_1 : f \neq f_0$ for some candidate density f_0. With EL techniques, one immediate test for H_0 is based on the function $G_0(\lambda) = 1/f_0(\lambda)$ with spectral mean π under H_0; here we treat $r = 1$ and the dimension p of θ as 0. We show in Section 7 that a EL ratio test results which resembles a spectral goodness-of-fit test statistic proposed by [30] and shown by [3] to be useful for LRD Gaussian series. The more interesting and complicated problem of testing the hypothesis that f belongs to a given model family can also be addressed with FDEL, as discussed in Section 7.

Example 4: Whittle estimation. We denote a parametric collection of spectral densities as

$$\mathcal{F} = \{f_\theta(\lambda) : \theta \in \Theta\}$$

(7)

and assume the densities are positive on Π and identifiable (e.g., for $\theta \neq \tilde{\theta} \in \Theta$, the Lebesgue measure of $\{\lambda : f_\theta(\lambda) \neq f_{\tilde{\theta}}(\lambda)\}$ is positive). For fitting the model f_0 to the data, Whittle estimation [42] seeks the θ-value at which the theoretical “distance” measure

$$W(\theta) = (4\pi)^{-1} \int_0^\pi \left\{\log f_\theta(\lambda) + \frac{f(\lambda)}{f_\theta(\lambda)}\right\} d\lambda$$

(8)

achieves its minimum [14]. The model class may be misspecified (possibly $f \notin \mathcal{F}$) but Whittle estimation aims for the density in \mathcal{F} “closest” to f as measured by $W(\theta)$.

To consider a particular parameterization of (7), suppose

$$f_\theta(\lambda) = \sigma^2 k_\vartheta(\lambda), \quad \theta = (\sigma^2, \vartheta')', \quad \Theta \subset (0, \infty) \times \mathbb{R}^{p-1}, \quad \vartheta = (\vartheta_1, \ldots, \vartheta_{p-1})',$$

(9)

with kernel density k_ϑ and that Kolmogorov’s formula holds with $(2\pi)^{-1} \int_{-\pi}^{\pi} \log f_\theta(\lambda) d\lambda = \log[\sigma^2/(2\pi)]$ (e.g., taking σ^2 as the innovation variance in a linear model). The model class in (9) is commonly considered in the context of Whittle estimation for both SRD and LRD time
series, including those LRD processes formulated in (3) and (4) (see [11, 16, 18, 21]). Under appropriate conditions, the true minimum argument \(\theta_0 = (\sigma^2_0, \vartheta_0)' \) of \(W(\theta) \) is determined by the stationary solution of: \(\partial W(\theta)/\partial \theta = 0 \) or

\[
\int_0^\pi f(\lambda) \left\{ \frac{\partial f^{-1}_q(\lambda)}{\partial \theta} \right\} d\lambda = 0, \quad \pi^{-1} \int_0^\pi f(\lambda) f^{-1}_q(\lambda) d\lambda = 1, \quad (10)
\]

where \(f^{-1}_q(\lambda) \equiv 1/f_{\theta}(\lambda) \). The moment conditions in (10) give a set of estimating functions for FDEL inference on \(\theta \) defining the densities in (9). Namely, the choice

\[
G_{\theta}^w(\lambda) = (f^{-1}_q(\lambda), \partial f^{-1}_q(\lambda)/\partial \vartheta_1, \ldots, \partial f^{-1}_q(\lambda)/\partial \vartheta_{p-1})', \quad \mathcal{M}_w = (\pi, 0, \ldots, 0)' \in \mathbb{R}^p, \quad (11)
\]

fulfills (6). The FDB uses similar estimating equations for Whittle parameter inference [12]. To treat \(\sigma^2 \) as a nuisance parameter, which is common for densities as in (9), estimating functions

\[
G_{\theta}^{w*}(\lambda) = \partial k^{-1}_q(\lambda)/\partial \vartheta, \quad \mathcal{M}_{w*} = 0 \in \mathbb{R}^{p-1}, \quad (12)
\]

provide structure for inference on the remaining parameters \(\vartheta \) determining \(k_\theta \) in \(f_\theta \).

3 Definition of frequency domain empirical likelihood

Denote the periodogram of the sequence \(X_1, \ldots, X_n \) by \(I_n(\lambda) = (2\pi n)^{-1} \sum_{i=1}^n X_i \exp(-it\lambda)|^2 \), \(\lambda \in \Pi = [-\pi, \pi], \) where \(t = \sqrt{-1} \). Using estimating functions \(G_{\theta} \) in (5), the profile FDEL function for \(\theta \in \Theta \) is given by

\[
L_n(\theta) = \sup \left\{ \prod_{j=1}^N w_j : w_j \geq 0, \quad \sum_{j=1}^N w_j = \pi, \quad \sum_{j=1}^N w_j G_{\theta}(\lambda_j) I_n(\lambda_j) = \mathcal{M} \right\}, \quad (13)
\]

where \(\lambda_j = 2\pi j/n, \ j \in \mathbb{Z}, \) are Fourier frequencies and \(N = [(n - 1)/2] \). Point masses \(w_j \) assigned to each ordinate \(\lambda_j \) create a discrete measure on \([0, \pi] \) with the restriction that the integral of \(G_{\theta} I_n \), based on this measure, equals \(\mathcal{M} \). The largest possible product of these point masses determines the FDEL function for \(\theta \in \Theta \). When the conditioning set in (13) is empty, we define \(L_n(\theta) = -\infty \). If \(\mathcal{M} \) is interior to the convex hull of \(\{ \pi G_{\theta}(\lambda_j) I_n(\lambda_j) \}_{j=1}^N \), then \(L_n(\theta) \) is a positive constrained maximum solved by optimizing

\[
L(w_1, \ldots, w_N, \gamma, t) = \sum_{j=1}^N \log(w_j) + \gamma \left(\pi - \sum_{j=1}^N w_j \right) - Nt' \left(\sum_{j=1}^N w_j G_{\theta}(\lambda_j) I_n(\lambda_j) - \mathcal{M} \right),
\]

with Lagrange multipliers \(\gamma \) and \(t = (t_1, \ldots, t_r)' \) as in [33, 34]. Then, (13) may be written as

\[
L_n(\theta) = \pi^N \prod_{j=1}^N p_j(\theta), \quad p_j(\theta) = N^{-1} \left[1 + t'_\theta \{ \pi G_{\theta}(\lambda_j) I_n(\lambda_j) - \mathcal{M} \} \right]^{-1} \in (0, 1), \quad (14)
\]
where t_{θ} is the stationary point of the function $q(t) = \sum_{j=1}^{N} \log(1 + t' \{ \pi G_{\theta}(\lambda_j)I_n(\lambda_j) - M \})$.

(See [34, 38] for further computational details on EL.) Without the integral-type linear constraint in (13), $\prod_{j=1}^{N} w_j$ has a maximum when each $w_j = \pi/N$ so that we can form a profile EL ratio:

$$R_n(\theta) = \frac{L_n(\theta)}{(\pi N^{-1})^N} = \prod_{j=1}^{N} \left[1 + t_{\theta}' \{ \pi G_{\theta}(\lambda_j)I_n(\lambda_j) - M \} \right]^{-1}. \quad (15)$$

3.1 A density-based formulation of empirical likelihood

To help frame the EL results here to those in [31], we give an alternative, model-based formulation of FDEL. This version requires a density class F as in (7) and involves approximating the expected value $E(I_n(\lambda_j))$ with $f_{\theta}(\lambda_j)$ using a density $f_{\theta} \in F$. Namely, let

$$L_{n,F}(\theta) = \sup \left\{ \prod_{j=1}^{N} w_j : w_j \geq 0, \sum_{j=1}^{N} w_j = \pi, \sum_{j=1}^{N} w_j G_{\theta}(\lambda_j)[I_n(\lambda_j) - f_{\theta}(\lambda_j)] = 0 \right\}$$

$$R_{n,F}(\theta) = \left(\frac{N}{\pi} \right)^N L_{n,F}(\theta). \quad (16)$$

We consider the densities f_{θ} and prospective functions G_{θ} as dependent on the same parameters which causes no loss of generality. An exact form for $L_{n,F}(\theta)$ can be deduced as with $L_n(\theta)$, obtained by replacing $I_n(\lambda_j), M$ with $I_n(\lambda_j) - f_{\theta}, 0$ in (14).

Section 6 discusses the model-based EL ratio in (16) for refining results in [31] on confidence interval estimation of Whittle parameters. This version of FDEL may additionally be suitable for conducting goodness-of-fit tests with respect to a family of spectral densities.

4 Main Result: Distribution of empirical likelihood ratio

Before describing the distributional properties of FDEL, we set some assumptions on the time process under consideration and the potential vector of estimating functions G_{θ} in (5).

4.1 Assumptions

In the following, let θ_0 denote the unique (true) parameter value which satisfies (6).

Assumptions

(A.1) $\{X_t\}$ is a real-valued, linear process with a moving average representation of the form:

$$X_t = \mu + \sum_{j=-\infty}^{\infty} b_j \varepsilon_{t-j}, \ t \in \mathbb{Z}$$
where \(\{\varepsilon_t\} \) are iid random variables with \(\text{E}(\varepsilon_t) = 0, \text{E}(\varepsilon_t^2) = \sigma^2 > 0, \text{E}(\varepsilon_t^4) < \infty \) and 4-th order cumulant denoted as \(\kappa_{4\varepsilon} \equiv \text{E}(\varepsilon_t^4) - 3\sigma^4; \) \(\{b_t\} \) is a sequence of constants satisfying \(\sum_{t \in \mathbb{Z}} b_t^2 < \infty \) and \(b_0 = 1; \) and \(f(\lambda) = \sigma^2 |b(\lambda)|^2/(2\pi), \) \(\lambda \in \Pi \) with \(b(\lambda) = \sum_{j \in \mathbb{Z}} b_j e^{ij\lambda}. \) It is assumed that \(f(\lambda) \) is continuous on \((0, \pi) \) and that \(f(\lambda) \leq C|\lambda|^{-\alpha}, \lambda \in \Pi, \) for some \(\alpha \in [0, 1), C > 0. \)

(A.2) Each component \(g_{j,0_0} \) of \(G_{0_0} \) is an even, integrable function such that \(|g_{j,0_0}(\lambda)| \leq C|\lambda|^{\beta}, \lambda \in \Pi, \) where \(0 \leq \beta < 1, \alpha - \beta < 1/2, j = 1, \ldots, r. \)

(A.3) For each \(g_{j,0_0}(\lambda), j = 1, \ldots, r, \) one of the following is fulfilled: Condition 1. \(g_{j,0_0} \) is Lipschitz of order greater than \(1/2 \) on \([0, \pi]. \)
Condition 2. \(g_{j,0_0} \) is continuous on \(\Pi \) and \(|\partial g_{j,0_0}(\lambda)/\partial \lambda| \leq C|\lambda|^{\beta_j - 1} \) for some \(0 \leq \beta_j < 1, 2\alpha - \beta_j < 1. \)
Condition 3. \(g_{j,0_0} \) is of bounded variation on \([0, \pi] \) with finite discontinuities and \(\alpha < 1/2 \) with \(|r(k)| \leq Ck^{-v} \) for some \(v > 1/2 \) (e.g., \(v = 1 - \alpha). \)

(A.4) The \(r \times r \) matrix \(W_{0_0} = \int_{\Pi} f^2(\lambda)G_{0_0}(\lambda)G_{0_0}^\prime(\lambda)d\lambda \) is positive definite.

(A.5) On \((0, \pi], f \) is differentiable and \(|\partial f(\lambda)/\partial \lambda| \leq C|\lambda|^{-\alpha - 1}; \) or each \(f(\lambda)g_{j,0_0}(\lambda) \) is of bounded variation or is piecewise Lipschitz of order greater than \(1/2 \) on \([0, \pi], \) \(j = 1, \ldots, r. \)
As \(n \to \infty, P(0 \in \text{ch}^\circ \{ \pi G_{0_0}(\lambda_j)|I_n(\lambda_j) - f(\lambda_j)\}|_{j=1}^N) \to 1, \) where \(\text{ch}^\circ A \) denotes the interior convex hull of a finite set \(A \subset \mathbb{R}^r. \)

We briefly discuss the assumptions. The bound on \(f \) in Assumption A.1 allows for the process \(\{X_t\} \) to exhibit both SRD and LRD and is a slight generalization of (1). The behavior of \(G_{0_0} \) in Assumption A.2 controls the growth rate of the scaled periodogram ordinates, \(G_{0_0}(\lambda_j)I_n(\lambda_j), \) at low frequencies under LRD and ensures that \(W_{0_0} \) is finite. Important processes are permissible under A.1 and, for these, useful estimating functions often satisfy A.2. Assumption A.3 outlines smoothness criteria for the estimating functions. The estimating functions treated by the FDB in [12] meet A.3, including those for autocorrelations and normalized spectral distribution in Section 2.1. The functions \(f_{\theta}^{-1} \) and \(\partial f_{\theta}^{-1}/\partial \theta \) from Examples 3 and 4 satisfy A.3 with many SRD and LRD models for use in Whittle-like estimation and goodness-of-fit testing in the FDEL framework. For example, [21] considers Whittle estimation for ARMA densities for which functions \(G_{\theta}^y \) in (11) meet Condition 1. The functions \(f_{\theta}^{-1} \) and \(\partial f_{\theta}/\partial \theta \) associated with the fractional Gaussian and FARIMA LRD densities in (3) and (4) fulfill Condition 2 [11, 16, 18]. Process dependence that is not
extremely strong, so that f^2 is integrable, allows greater flexibility in choosing more general estimating functions in Condition 3.

For EL inference exclusively with the model-based functions $L_{n,x}$ or $R_{n,x}$ from Section 3.1, we use an additional assumption A.5 which is generally not restrictive. The probabilistic condition in A.5 implies only that the EL ratio $R_{n,x}$ can be finitely computed at θ_0, resembling EL assumptions of [31] and [35].

4.2 Asymptotic distribution of empirical likelihood ratio & confidence regions

We now establish a nonparametric recasting of Wilks’ theorem [43] for FDEL ratios under SRD and LRD, useful for setting confidence regions and making simple hypothesis tests as in [33, 34, 35]. Define two scaled log-profile FDEL ratio statistics:

$$\ell_n(\theta) = -4 \log R_n(\theta) \quad \text{and} \quad \ell_{n,x}(\theta) = -2 \log R_{n,x}(\theta),$$

using (15) and (16). The difference in the scalar adjustments to log-likelihoods in (17) owes to the assumption that the periodogram ordinates are “mean-corrected” in the construction of $\ell_{n,x}(\theta)$. In the following, χ^2_ν denotes a chi-square distribution with ν degrees of freedom.

Theorem 1 Suppose Assumptions A.1-A.4 hold. If $\mathcal{M} = 0 \in \mathbb{R}^r$, then as $n \to \infty$

(i) $\ell_n(\theta_0) \xrightarrow{d} \chi^2_r$.
(ii) Additionally, if A.5 holds and $f = f_{\theta_0}$, then $\ell_{n,x}(\theta_0) \xrightarrow{d} \chi^2_r$.
(iii) If $\kappa_{4,\varepsilon} = 0$, statement (ii) remains valid even if $\mathcal{M} \neq 0 \in \mathbb{R}^r$.

Remark 1: For a Gaussian $\{X_t\}$ process, the 4-th order innovation cumulant $\kappa_{4,\varepsilon} = 0$.

Due to the data transformation aimed at weakening the time dependence structure, FDEL ratios closely resemble EL ratios with iid data [34, 38]. The formulation of estimating equations satisfying $\mathcal{M} = 0$ in (6) is generally necessary for $\ell_n(\theta_0)$ to have a chi-square limit and is a consequence of this EL based on the periodogram. A similar moment restriction is shared by the FDB, as detailed by [12] (p. 1938), due to difficulties in estimating the variance of empirical spectral means. Similar complications arise in the inner mechanics of FDEL, requiring $\mathcal{M} = 0$. As the proof of Theorem 1 shows (see (24) and (27)), variance estimators intrinsic to FDEL ratios are asymptotically of the form given in Lemma 7 of Section 9 (i.e., setting $gh = GG^t$ there) and these target the asymptotic variance V of an empirical spectral mean appearing in Lemma 6 so that variance estimation within FDEL is consistent if $\mathcal{M} = 0$ (or if the innovation cumulant $\kappa_{4,\varepsilon} = 0$); see [32] for details. However, Section 2.1 gives some important estimating equations for which $\mathcal{M} = 0$ and, of note, estimating functions may be chosen with more flexibility for inference on Gaussian processes.
If the true density $f \in \mathcal{F}$ in (7), then a confidence region can be calibrated with $\ell_{n,\mathcal{F}}(\theta)$ as well. [31] suggests similar confidence regions for Whittle estimation with SRD linear processes and spectral densities parameterized as in (9) (e.g., ARMA models). However, if the candidate density class \mathcal{F} is incorrect, confidence regions based on $\ell_{n,\mathcal{F}}(\theta)$ become conservative to a degree dependent on the misspecification. This closely parallels the behavior of the EL ratio with misspecified regression models, as described in Section 5.4 of [35]. Confidence regions set with ℓ_n do not generally require specification of a model density class \mathcal{F} but, for the case of inference on Whittle parameters where a class of densities \mathcal{F} may be involved, Section 6 describes how ℓ_n (unlike $\ell_{n,\mathcal{F}}$) may be used even if \mathcal{F} is misspecified.

5 Extensions to maximum empirical likelihood estimation

We shall refer to the maximum of $R_n(\theta)$ from (15) as the maximum empirical likelihood estimator (MELE) and denote it by $\hat{\theta}_n$; we denote the maximum of $R_{n,\mathcal{F}}(\theta)$ from (16) as $\hat{\theta}_{n,\mathcal{F}}$. We next show that, with both SRD and LRD linear time series, maximum empirical likelihood estimates (MELEs) $\hat{\theta}_n$ and $\hat{\theta}_{n,\mathcal{F}}$ have properties resembling those available in EL frameworks involving independent data.

5.1 Consistency and asymptotic normality

We first consider establishing the existence, consistency and asymptotic normality of a sequence of local maximums of FDEL functions $R_n(\theta)$ and $R_{n,\mathcal{F}}(\theta)$, along classical arguments of [8]. The assumptions involved are very mild and have the advantage that these are typically simple to verify and apply to both versions of FDEL $R_n(\theta)$ and $R_{n,\mathcal{F}}(\theta)$. [38] adopt a similar approach to study MELEs in the iid data scenario.

Let $\| \cdot \|$ denote the Euclidean norm. For $n \in \mathbb{N}$, define the open neighborhood $B_n = \{ \theta \in \Theta : \| \theta - \theta_0 \| < n^{-\eta} \}$, where $\eta = \max\{1/3, 1/4 + (\alpha - \beta)/2, (1 + \alpha + \delta)/4 \} < 1/2$ for $\delta < 1$ defined next in Theorem 2 and α, β from Assumptions A.1-A.2.

Theorem 2 Assume A.1-A.4 hold and $M = 0$. Suppose, in a neighborhood of θ_0, $\partial G_\theta(\lambda)/\partial \theta$, $\partial^2 G_\theta(\lambda)/\partial \theta \partial \theta'$ are continuous in θ and $\| \partial G_\theta(\lambda)/\partial \theta \|$, $\| \partial^2 G_\theta(\lambda)/\partial \theta \partial \theta' \|$ are bounded by $C|\lambda|^{-\delta}$ for some $\delta < 1$, $\delta + \alpha < 1$; $\partial G_{\theta_0}/\partial \theta$ is Riemann integrable; and $D_{\theta_0} \equiv \int_{\Pi} f(\lambda) \partial G_{\theta_0}(\lambda)/\partial \theta d\lambda$ has full column rank p.

(i) As $n \to \infty$, there exists a sequence of statistics $\{ \hat{\theta}_n \}$ such that $P(\hat{\theta}_n$ is a maximum of $R_n(\theta)$ and $\hat{\theta}_n \in B_n) \to 1$ and

$$\sqrt{n} \left(\hat{\theta}_n - \theta_0 \right) \overset{d}{\to} \mathcal{N} \left(0, \left[\begin{array}{c} V_{\theta_0} \\ 0 \\ 0 \\ U_{\theta_0} \end{array} \right] \right)$$
where $V_{0\theta} = 4\pi(D_{0\theta}'W_{0\theta}^{-1}D_{0\theta})^{-1}$ and $U_{0\theta} = \pi^{-1}W_{0\theta}^{-1}(I_{0\theta}-(4\pi)^{-1}D_{0\theta}'V_{0\theta}D_{0\theta}^{-1})$.

(ii) Additionally, suppose A.5 and $f = f_{0\theta}$ hold; $\partial f_{0\theta}/\partial \theta$ is Riemann integrable; for the closure \overline{B}_n, $P(0 \in \text{clos}\{\pi G_{\theta}(|\lambda_i|)I_n(\lambda_i)\}^N_{j=1}; \theta \in \overline{B}_n) \to 1$; and, in a neighborhood of θ_0, $\int_0^\lambda G_{\theta}(\lambda)f_{\theta}(\lambda)d\lambda = \mathcal{M}$ and $\|\partial f_{\theta}/\partial \theta\|, \|\partial^2 f_{\theta}(\lambda)/\partial \theta d\theta\| \leq C|\lambda|^{-\alpha}, \lambda \in (0, \pi]$. Then, there exists a sequence of statistics $\{\hat{\theta}_{n,x}\}$ where $P(\hat{\theta}_{n,x} \text{ is a maximum of } R_{n,x}(\theta) \text{ and } \hat{\theta}_{n,x} \in B_n) \to 1$ as $n \to \infty$, and the distributional result in (i) is valid for $\sqrt{n}((\hat{\theta}_{n,x} - \theta_0, t_{\hat{\theta}_{n,x}}/2)^T$.

(iii) If $\kappa_{4,x} = 0$, then Theorem 2(ii) holds even if $\mathcal{M} \neq 0 \in \mathbb{R}$.

Remark 2: When assuming $f \in \mathcal{F}$ in Theorem 2(ii), a constant function $\int_0^\lambda G_{\theta}(\lambda)f_{\theta}(\lambda)d\lambda = \mathcal{M}$ of θ represents a natural relationship between the chosen estimating functions and \mathcal{F} (e.g., the Whittle estimating equations G_{θ}^w in (11)). The probabilistic assumption on the closure \overline{B}_n in Theorem 2(ii) is similar to Assumption (A.5) and implies the FDEL ratio $\ell_{n,x}(\theta)$ exists finitely in a neighborhood of θ_0.

As pointed out by a referee, Theorem 2 establishes consistency of a local maximizer of the EL function only. In the event that the likelihood R_n or $R_{n,x}$ has a single maximum with probability approaching 1 (e.g., by concavity of $R_n(\theta)$), then the sequence $\{\hat{\theta}_n\}$ or $\{\hat{\theta}_{n,x}\}$ corresponds to a global MELE. In many cases, the consistency of global maximizers can also be established using additional conditions. In Theorem 3 below, we give conditions for the consistency of $\hat{\theta}_n$; similar conditions for $\hat{\theta}_{n,x}$ can be developed. Note that these conditions are satisfied by the estimating functions given Section 2.

Theorem 3 Suppose Assumption A.1 holds.

(i) Assume θ_0 lies in the interior of $\Theta; G_{\theta}(\lambda)$ is a (componentwise) continuous and monotone function of θ for $\lambda \in \Pi$; and, for $\theta \in \Theta$, $|G_{\theta}(\lambda)|$ is Riemann integrable and bounded by $C|\lambda|^{-\delta}$ for some $\delta < 1, \alpha + \delta < 1$. Then, as $n \to \infty$,

$$P(\hat{\theta}_n = \arg\max_{\theta \in \Theta} R_n(\theta) \text{ exists }) \to 1 \text{ and } \hat{\theta}_n \xrightarrow{p} \theta_0 \quad (18)$$

(ii) Suppose Θ is compact; $G_{\theta}(\lambda) \equiv G_{\theta}^w$ from (11) (or $G_{\theta}^{w*}(\lambda)$ from (12)) is continuous at all $(\lambda, \theta) \in \Pi \times \Theta$; and $W(\theta)$ from (8) attains its minimum on the interior of Θ. Then, (18) holds as $n \to \infty$.

5.2 **Empirical likelihood tests of hypotheses**

EL ratio test statistics with $\hat{\theta}_n$ and $\hat{\theta}_{n,x}$ are possible for both parameter and moment hypotheses. Similar to parametric likelihood, we can use the log-EL ratio $\ell_n(\theta_0) - \ell_n(\hat{\theta}_n)$ to test the parameter assumption $H_0: \theta = \theta_0$. For testing the null hypothesis that the true parameter θ_0 satisfies the spectral mean condition in (6), the log-ratio statistic $\ell_n(\hat{\theta}_n)$
is useful. Analogous tests are possible with $\ell_{n,x}(\theta_0)$ and $\ell_{n,x}(\hat{\theta}_{n,x})$. These EL log-ratio statistics have limiting chi-square distributions for testing the above hypotheses.

Theorem 4 Under the assumptions of Theorem 2 with the sequences $\{\hat{\theta}_n\}$ and $\{\hat{\theta}_{n,x}\}$,

(i) $\ell_n(\theta_0) - \ell_n(\hat{\theta}_n) \xrightarrow{d} \chi^2_p$, $\ell_n(\hat{\theta}_n) \xrightarrow{d} \chi^2_{r-p}$ and these are asymptotically independent.

(ii) $\ell_{n,x}(\theta_0) - \ell_{n,x}(\hat{\theta}_{n,x}) \xrightarrow{d} \chi^2_p$, $\ell_{n,x}(\hat{\theta}_{n,x}) \xrightarrow{d} \chi^2_{r-p}$ and these are asymptotically independent, if the assumptions in Theorem 2(ii) are additionally satisfied.

(iii) If $\kappa_{4,e} = 0$, Theorem 4(ii) remains valid even if $\mathcal{M} \neq 0 \in \mathbb{R}^r$.

In Sections 6 and 7 to follow, Theorems 1-4 are applied to Whittle estimation and goodness-of-fit testing in the FDEL framework.

5.2.1 Parameter restrictions and nuisance parameters

[39] introduced constrained EL inference for independent samples and [24] provided a block-wise version for time domain EL under SRD. We can also consider FDEL estimation subject to a system of parameter constraints on θ: $\psi(\theta) = 0 \in \mathbb{R}^q$ where $q < p$ and $\Psi(\theta) = \partial \psi(\theta)/\partial \theta$ is of full row rank q. By maximizing the EL functions in (15) or (16) under the above restrictions, we find constrained MELEs $\hat{\theta}_n^\psi$ or $\hat{\theta}_{n,x}^\psi$.

Corollary 1 Suppose the conditions in Theorem 2 hold and, in a neighborhood of θ_0, $\psi(\theta)$ is continuously differentiable, $\|\partial^2 \psi(\theta)/\partial \theta \partial \theta^T\|$ is bounded, and $\Psi(\theta_0)$ is rank q. If H_0: $\psi(\theta_0) = 0$ holds, then $\ell_n(\hat{\theta}_n^\psi) - \ell_n(\hat{\theta}_n) \xrightarrow{d} \chi^2_q$ and $\ell_n(\hat{\theta}_n^\psi) - \ell_n(\hat{\theta}_n^0) \xrightarrow{d} \chi^2_{r-q}$ as $n \to \infty$.

We can then sequentially test H_0: $\psi(\theta_0) = 0$ with a log-likelihood ratio statistic $\ell_n(\hat{\theta}_n^\psi) - \ell_n(\hat{\theta}_n)$ and, if failing to reject H_0, make an approximate $100(1-\gamma)*$ confidence region for constrained θ values $\{\theta : \psi(\theta) = 0, \ell_n(\theta) - \ell_n(\hat{\theta}_n^\psi) \leq \chi^2_{r-q,1-\gamma}\}$.

Profile FDEL ratio statistics can also be developed to conduct tests in the presence of nuisance parameters (see Corollary 5 of [38] for the iid case). Suppose $\theta = (\theta_1', \theta_2')'$, where θ_1 and θ_2 are $q \times 1$ and $(p-q) \times 1$ vectors. For fixed $\theta_1 = \theta_1^0$, suppose that $\hat{\theta}_2^0$ and $\hat{\theta}_{2,x}^0$ maximize the EL functions $R_n(\theta_1^0, \theta_2)$, $R_{n,x}(\theta_1^0, \theta_2)$ with respect to θ_2.

Corollary 2 Under the conditions in Theorem 2, if H_0: $\theta_1 = \theta_1^0$ holds, then $\ell_n(\theta_1^0, \hat{\theta}_2^0) - \ell_n(\hat{\theta}_n) \xrightarrow{d} \chi^2_q$ as $n \to \infty$.

If assumptions in Theorem 2(ii) are satisfied as well, Corollaries 1-2 hold using $\ell_{n,x}(\cdot)$, $\hat{\theta}_{n,x}$, $\hat{\theta}_{n,x}^\psi$ and $\hat{\theta}_{2,x}^\psi$.

12
6 Whittle estimation

Example 4 (continued). With SRD linear processes, [31] suggested EL confidence regions for Whittle-like estimation of parameters \(\theta = (\sigma^2, \vartheta')' \) characterizing \(f_\theta \in \mathcal{F} \) from (9). Theorem 1 provides two refinements to [31].

Refinement 1. [31] develops an EL function for \(\theta \) by treating the standardized ordinates \(I_n(\lambda_j)/f_\theta(\lambda_j), j = 1, \ldots, N \), as approximately iid random variables, similar to the FDB. The EL ratio in (4.1) of [31] asymptotically corresponds to \(\ell_n, F(\theta) \) when using the estimating functions \(G_w^\theta \) from (11). With this choice of functions, the non-zero spectral mean \(M_w \neq 0 \) in (11) is due to the first estimating function \(f^{-1}_\theta \) intended to prescribe \(\sigma^2 \). Note that the use of \(\ell_n, F(\theta) \) and \(G_w^\theta \) for setting confidence regions requires the additional assumption that the 4-th order innovation cumulant \(\kappa_{4,\varepsilon} = 0 \) by Theorem 1. Valid joint confidence regions are otherwise not possible here because \(M_w \neq 0 \). This complication due to \(\sigma^2 \)-inference is related to the inconsistency of the FDB Whittle estimate of \(\sigma^2 \) when \(\kappa_{4,\varepsilon} \neq 0 \), as described by [12]. While valid for SRD Gaussian series with \(\kappa_{4,\varepsilon} = 0 \), periodogram-based EL formulation in [31] may not be applicable to general SRD linear processes.

Refinement 2. Treating \(\sigma^2 \) as a nuisance parameter and concentrating it out of the Whittle likelihood, [31] suggests an EL ratio statistic for estimation of the remaining \(p - 1 \) parameters \(\vartheta \) in (9) via confidence regions. The statistic (6.1) of [31] appears to be asymptotically equivalent to \(-2 \log R_n(\vartheta) = 1/2 \cdot \ell_n(\vartheta)\) based on the \(p - 1 \) estimating functions \(G_w^{\vartheta*} \) from (12) and \(N = \lfloor (n - 1)/2 \rfloor \) periodogram ordinates. Note that, for the function \(G_w^{\vartheta*} \), it holds that \(M_{w*} = 0 \) so that Theorem 1(i) applies to \(\ell_n(\vartheta) \).

For Whittle-like estimation of \(\vartheta \) in the parameterization from (9), the EL log-ratio \(\ell_n(\vartheta) \) based on the functions \(G_w^{\vartheta*} \) in (12) appears preferable to \(\ell_{n,x}(\vartheta) \). This selection results in asymptotically correct confidence regions for \(\vartheta \) under both SRD and LRD, even for misspecified situations (\(f \notin \mathcal{F} \)) where the moments in (10) still hold.

7 Goodness-of-fit tests

7.1 Simple hypothesis case

Example 3 (continued) We return to the simple hypothesis test \(H_0: f = f_0 \) for some possible density \(f_0 \). To assess the goodness-of-fit, [30] and [3] proposed the test statistic \(T_n = \pi A_n/B_n^2 \) for mixing SRD linear processes (with \(\kappa_{4,\varepsilon} = 0 \) and long-memory Gaussian
processes, respectively, and established the limiting bivariate normal law of \(\sqrt{n} \{(A_n, B_n)' - (2\pi, \pi)\} \) under \(H_0 \) for \(A_n = 2\pi/n \sum_{j=1}^N I_n^2(\lambda_j)/f_0^2(\lambda_j), \) \(B_n = 2\pi/n \sum_{j=1}^N I_n(\lambda_j)/f_0(\lambda_j). \) Since these linear processes involve \(\kappa_{4,2} = 0, \) under Theorem 1(iii) we can construct a single statistic \(\ell_{n,x} \) to test \(H_0 \) by treating \(\mathcal{F} = \{f_0\} \) in (7) and employing a single estimating function \(f_0^{-1} \) satisfying (6) with \(M = \pi \) under \(H_0. \) In expanding \(\ell_{n,x} = n(B_n - \pi)^2/(\pi A_n) + o_p(1), \) we find the FDEL ratio statistic asymptotically incorporates much of the same information in \(T_n \) under \(H_0 \) (with better power when \(f = cf_0, c \neq 1). \)

For testing the special hypothesis \(H_0: \{X_t\} \) is white noise (constant \(f), \) a FDEL goodness-of-fit test based on the process autocorrelations can be applied, similar to some Portmanteau tests [5, 28]. The estimating functions \(G(\lambda) = (\cos(\lambda), \ldots, \cos(m\lambda)')' \) satisfy (6) with \(M = 0 \in \mathbb{R}^m \) under this \(H_0 \) (see Example 1) and yield a single EL ratio \(\ell_n \) which pools information across \(m \) EL estimated autocorrelation lags.

7.2 Composite hypothesis case

To test the composite hypothesis \(H_0: \{X_t\} \) is Gaussian time series and we wish to test if \(f \in \mathcal{F} \) for some parametric family as in (9), which includes densities (3) or (4). This scenario is considered by [3] and [37] for LRD and SRD Gaussian models, respectively. FDEL methods may simultaneously incorporate both components of model fitting and model comparison through estimating equations

\[
\int_0^\pi G_\theta^w f d\lambda = M_w, \quad \int_0^\pi (f/f_0)^2 d\lambda = \pi,
\]

where \(G_\theta^w = (f_0^{-1}, \partial f_0^{-1}/\partial \theta')' \) are the Whittle estimating functions from (11) for the parameters \(\theta = (\sigma^2, \theta')' \in \mathbb{R}^p \) in \(f_0. \) Note that we introduce an overidentifying moment restriction on \(f \) in (19) so that \(r = p + 1. \) We then extend the log-likelihood statistic \(\ell_{n,x} \) in (17) to include \(I_n^2 \) ordinates by defining \(\ell_{i_{n}^2,x}(\theta) = -2 \log R_{i_{n}^2,x}(\theta) \) for \(R_{i_{n}^2,x} = (N/\pi)^N L_{i_{n}^2,x}(\theta) \) and

\[
L_{i_{n}^2,x}(\theta) = \sup \left\{ \prod_{j=1}^N w_j : w_j \geq 0, \sum_{j=1}^N w_j = \pi, \sum_{j=1}^N w_j \left(I_n^2(\lambda_j)/\{2f_0^2(\lambda_j)\} - 1 \right) \right\} = 0,
\]

using \(f_\theta, f_0^2 \) above to approximate \(E(I_n), E(I_n^2)/2 \) for each ordinate.

To evaluate \(H_0: \{X_t\} \in \mathcal{F}, \) we test if the moment conditions in (19) hold for some \(\theta \) value. Following the test prescribed by Theorem 4, we find the argument maximum of \(L_{i_{n}^2,x}(\theta), \)
say $\hat{\theta}_{I_n^F}$, and form a test statistic $\ell_{I_n^F}(\hat{\theta}_{I_n^F})$ for this H_0. The subsequent extension of Theorem 4 gives the distribution for our test statistic.

Theorem 5 Suppose $\{X_t\}$ is Gaussian and the assumptions in Theorem 4(ii) hold for f_{θ_0} and $G_{\theta_0}^w$ with $\alpha - \beta < \nu$, for each arbitrarily small $\nu > 0$. Under the null hypothesis $f = f_{\theta_0} \in \mathcal{F}$, $\ell_{I_n^F}(\hat{\theta}_{I_n^F}) \xrightarrow{d} \chi^2_1$ as $n \to \infty$.

The distributional result is valid even with nonzero spectral mean conditions in (19) because the process is Gaussian. We make a few comments about model misspecification. Suppose $f \not\in \mathcal{F}$ but θ_0 still represents the parameter value which minimizes the asymptotic distance measure $W(\theta)$ in (8) and f_{θ_0} satisfies (10) (i.e., $\int_0^\pi G_{\theta_0}^w f d\lambda = \mathcal{M}_w$ holds). A test consistency property can then be established: as $n \to \infty$,

$$n^{-1}\ell_{I_n^F}(\hat{\theta}_{I_n^F}) \overset{p}{\to} a_0 \left\{ \int_0^\pi \left(\frac{f(\lambda)}{f_{\theta_0}(\lambda)} - 1 \right)^2 d\lambda \right\} > 0,$$

where $a_0 > 0$ depends on f and f_{θ_0}. We are assured that the test statistic can determine if H_0: $f \in \mathcal{F}$ is true as the sample size increases.

8 Conclusions

We have introduced a frequency domain version of empirical likelihood (FDEL) based on the periodogram, which allows spectral inference, in a variety of applications, on both short- and long-range dependent linear processes. Further numerical study and development of FDEL will be considered in future communications. See [32] for extensions of FDEL using the tapered periodogram in (13) under weak dependence. A valuable area of potential research includes Bartlett corrections to the EL ratios in (17) (see [13] for iid data). Second- and higher-order correct FDEL confidence regions may be possible without the kernel estimation or stringent moment assumptions required with the frequency domain bootstrap of [12].

9 Proofs

We only outline some proofs here to save space. Detailed proofs can be found in [32] and we shall refer to relevant results given there. We require some additional notation and lemmas to help with the proofs. In the following, C or $C(\cdot)$ will denote generic constants that depend on their arguments (if any) but do not depend on n, including ordinates $\{\lambda_j\}_{j=1}^N$.

Define the mean corrected discrete Fourier transforms: $d_{nc}(\lambda) = \sum_{t=1}^n (X_t - \mu) e^{-it\lambda}$, $\lambda \in \Pi$. Note that $2\pi n I_{nc}(\lambda) = |d_{nc}(\lambda)|^2 = d_{nc}(\lambda)d_{nc}(-\lambda)$ and $I_{nc}(\lambda_j) = I_n(\lambda_j)$ for $j = 1, \ldots, N$. Let $H_n(\lambda) = \sum_{t=1}^n e^{-it\lambda}$, $\lambda \in \mathbb{R}$, and write $K_n(\lambda) = (2\pi n)^{-1}|H_n(\lambda)|^2$ to denote the Fejer
kernel. The function K_n is nonnegative, even with period 2π on \mathbb{R} and $\int_{\mathbb{R}} K_n \, d\lambda = 1$ (see p. 71, [7]). We adopt the standard that an even function $g : \Pi \to \mathbb{R}$ can be periodically (period 2π) extended to \mathbb{R} by $g(\lambda) = g(-\lambda)$, $g(\lambda) = g(\lambda+2\pi)$ for $\lambda \in \mathbb{R}$. We make extensive use of the following function from [9]. Let $L_n : \mathbb{R} \to \mathbb{R}$ be the periodic extension of

$$L_{ns}(\lambda) =: \begin{cases} \frac{e^{-\frac{|\lambda|}{n}}}{\log^s(n|\lambda|)} & |\lambda| \leq e^s/n, \\ e^s/n < |\lambda| \leq \pi, & \lambda \in \Pi, \ s = 0, 1. \end{cases}$$

For each $n \geq 1$, $s = 0, 1$, $L_{ns}(\cdot)$ is decreasing on $[0, \pi]$ and

$$|H_n(\lambda)| \leq C L_{n0}(\lambda), \quad L_{n0}(\lambda) \leq \frac{3\pi n}{1 + |\lambda \text{mod } 2\pi/n|}, \quad \lambda \in \mathbb{R}, (20)$$

In the following, $\text{cum}(Y_1, \ldots, Y_m)$ denotes the joint cumulant of random variables Y_1, \ldots, Y_m. We often refer to cumulant properties from Section 2.3 of [6], including the product theorem for cumulants [c.f. Theorem 2.3.2].

We remark that Lemma 5 to follow ensures the log-likelihood ratio $\ell_n(\theta_0)$ exists asymptotically. Lemmas 6 and 7 establish important results for Riemann integrals based on the periodogram under both LRD and SRD; Lemma 6 considers the distribution of empirical spectral means and Lemma 7 is required for variance estimation.

Lemma 1 Let $1 \leq i \leq j \leq N$ and $0 < d < 1$. If $a_i \in \{\pm \lambda_i\}$, $a_j \in \{\pm \lambda_j\}$, $a_i + a_j \neq 0$, then

(i) $L_{n0}(a_i + a_j) \leq \frac{nc_{ijn}}{2\pi}$, $c_{ijn} = \begin{cases} (j - i)^{-1} \text{sign}(a_i) \neq \text{sign}(a_j), \\ (j + i)^{-1} \text{sign}(a_i) = \text{sign}(a_j), i + j \leq n/2, \\ (n - j - i)^{-1} \text{sign}(a_i) = \text{sign}(a_j), i + j > n/2. \end{cases}$

(ii) $L_{n1}(a_i + a_j) \leq \min \{\log(n\pi)\text{log}L_{n0}(a_i + a_j), nC[d][c_{ijn}]^d\}$.

(iii) $\int_{\Pi} L_{m0}^n(\lambda) \, d\lambda \leq C(m)[\log(n) + n^{m-1}], \quad m \geq 1 \in \mathbb{Z}$.

(iv) $\int_{\Pi} L_{m0}^n(r_1 + \lambda)L_{m0}^n(r_2 - \lambda) \, d\lambda \leq \begin{cases} CL_{n1}(r_1 + r_2) & m = 1 \\ CnL_{n0}^2(r_1 + r_2) & m = 2, \end{cases} \quad r_1, r_2 \in \mathbb{R}$.

proof: Parts (iii)-(iv) are from Lemmas 1-2 of [9]. Lemma 1(i) follows from the fact that $|(a_i + a_j) \text{mod } 2\pi| \geq 2\pi/n$ if $a_i + a_j \neq 0$ along with the definition of L_{n0}. □

Lemma 2 Suppose Assumption A.1 holds. Let $\Pi_\rho = [\rho, \pi]$ for $0 < \rho < \pi$. If $a_1, a_2 \in \Pi$, $|a_1| \leq |a_2|$, and $a_2 \in \Pi_\rho$, then $\text{cum}(d_{nc}(a_1), d_{nc}(a_2)) = 2\pi H_n(a_1 + a_2) f(a_2) + R_{n\rho}(a_1, a_2)$ and $R_{n\rho} = o(n)$ holds for $R_{n\rho} \equiv \sup\{|R_{n\rho}(a_1, a_2)| : a_1, a_2 \in \Pi, |a_1| \leq |a_2|, |a_2| \in \Pi_\rho\}$.

proof: We modify the proof of Theorem 1(a) of [9]; see [32], Lemma 3 for details. □

Lemma 3 Let $1 \leq i \leq j \leq N$ ($n \geq 3$), and $a_1, \ldots, a_k \in \{\pm \lambda_i, \pm \lambda_j\}$, $|a_1| \leq |a_2| \leq \cdots \leq |a_k|$ with $2 \leq k \leq 8$. Under Assumption A.1,
Under Assumption □

Lemma 1. From [26, 41], the

Lemma 4

$\limsup_{B \to \infty}$

Lemma 5

\[\sum_{j=1}^{k-1} |a_j|^{-\alpha/2} L_n^0(a_k - \lambda) d\lambda \leq C |a_k|^{-\alpha/2} L_n^0(a_k - \lambda) d\lambda \leq C |a_k|^{-\alpha/2} \log(n) \]

by Lemma 1(iii) while $\int_{|z| \leq |a_k|/2} |H_n(z)| d\lambda \leq C |\pi|^{-\alpha/2} \log(n)$ for each $\lambda \neq 0$. Since $\Pi^{k-1} \setminus B = \bigcup_{j=1}^{k-1} B_j$, we have $|\nu(\Pi^{k-1} \setminus B)| \leq \sum_{j=1}^{k-1} |\nu(B_j)| \leq C n \log^{-k}(n) \prod_{j=1}^{k-1} |a_j|^{-\alpha/2}$. □

Lemma 4 Under Assumption A.1, $\hat{r}(k) = \hat{r}(-k) = n^{-1} \sum_{j=1}^{n-k} (X_j - \mu)(X_{j+k} - \mu) \overset{P}{\to} r(k) = \text{Cov}(X_j, X_{j+k})$ as $n \to \infty$ for each $k \geq 0$.

proof: $\hat{r}(k)$ is asymptotically unbiased and $\text{Var}(\hat{r}(k)) = o(1)$ by Lemma 3.3 of [23]. □

Lemma 5 With Assumption A.1, suppose $G = (g_1, \ldots, g_r)' \equiv G_0$ is even with finite discontinuities on $[0, \pi]$ and satisfies Assumption A.2 and A.4. If $\int_{\Pi} G d\lambda = 0 \in \mathbb{R}$, then $P\left(0 \in \text{ch}^2 \{ \pi G(\lambda_j) I_n(\lambda_j) \} \right) \to 1$ as $n \to \infty$. 17
Suppose Assumptions (22) Condition 3 relies on Theorem 3.2 and Lemma 3.1 of [10] and Lemma 4 of [9]. where the last inequality follows from (20) and The distribution of $\tilde{\theta}$ proof: By Assumptions A.1-A.2, we have that Condition 1 of A.3 involves using the $\Theta \in \Pi$ from Theorem 2 and Lemma 6 of [18] and the Cramer-Wold device. To show the result for y the separating/supporting hyperplane theorem implies that $0 \in \text{ch}^{2} \{\pi G(\lambda_{j})I_{n}(\lambda_{j})\}_{j=1}^{N}$. □

Lemma 6 Suppose Assumptions A.1-A.3 hold with respect to an even function $G=(g_{1}, \ldots, g_{r})^{\prime} \equiv G_{\theta_{0}}$ and let $J_{n}=(2\pi/n)\sum_{j=1}^{N}G(\lambda_{j})I_{n}(\lambda_{j})$. Then, $\sqrt{n}(J_{n}-\int_{0}^{\pi}fGd\lambda) \overset{d}{\to} \mathcal{N}(0, V)$ as $n \to \infty$, where

$$V = \pi \int_{\Pi} f^{2}GG^{\prime}d\lambda + \frac{K_{\beta}(\pi)}{2\pi} \left(\int_{\Pi} fGd\lambda \right)^{2}.$$

If A.5 holds additionally, $\sqrt{n}J_{n} \overset{d}{\to} \mathcal{N}(0, V)$ for $\tilde{J}_{n}=(2\pi/n)\sum_{j=1}^{N}G(\lambda_{j})[I_{n}(\lambda_{j}) - f(\lambda_{j})]$.

proof: By Assumptions A.1-A.2, we have that $\sqrt{n}(\int_{0}^{\pi}GI_{nc}d\lambda - E\int_{0}^{\pi}GI_{nc}d\lambda) \overset{d}{\to} \mathcal{N}(0, V)$ from Theorem 2 and Lemma 6 of [18] and the Cramer-Wold device. To show the result for J_{n} in Lemma 6, it suffices to establish

$$\left\| E\int_{0}^{\pi}G(I_{nc} - f)d\lambda \right\| = O(n^{-1/2}), \quad \left\| J_{n} - \int_{0}^{\pi}GI_{nc}d\lambda \right\| = o_{p}(n^{-1/2}). \quad (21)$$

The distribution of \tilde{J}_{n} also then follows using $\| (2\pi/n)\sum_{j=1}^{N}G(\lambda_{j})f(\lambda_{j}) - \int_{0}^{\pi}fGd\lambda \| = o(n^{-1/2})$, which can be established with straightforward arguments; see [32], Lemma 10.

WLOG we assume that $G=g$ (i.e., $r=1$) and establish (21) under Condition 2 of Assumption A.3; see [32] for proofs under Conditions 1 or 3 of A.3. Proving (21) under Condition 1 of A.3 involves using the nth Cesaro mean $c_{n}g(\lambda) = \int_{\Pi}K_{n}(\lambda - y)g(y)dy$, $\lambda \in \Pi$, for which $\sup_{\lambda \in \Pi}|g(\lambda) - c_{n}g(\lambda)| = o(n^{-1/2})$ by Theorem 6.5.3 of [15], and using $\frac{2\pi}{n}\sum_{j=-N}^{N}c_{n}g(\lambda)I_{nc}(\lambda_{j}) = \int_{\Pi}c_{n}gI_{nc}d\lambda$, $E\int_{\Pi}gI_{nc}d\lambda = \int_{\Pi}c_{n}gI_{nc}d\lambda$. The proof under Condition 3 relies on Theorem 3.2 and Lemma 3.1 of [10] and Lemma 4 of [9].

We show the first convergence in (21) here; Lemma 10 in the Appendix gives the second part of (21). Using the evenness of K_{n}, $\int_{\Pi}K_{n}(\lambda - y)dy = 1$ and $E(I_{nc}(\lambda)) = \int_{\Pi}K_{n}(\lambda - y)f(y)dy$, we have

$$\sqrt{n}\left| E\int_{\Pi}gI_{nc}d\lambda - \int_{\Pi}gf\lambda d\lambda \right| \leq \sqrt{n}\int_{\Pi}K_{n}(\lambda - y)f(y)|g(\lambda) - g(y)|dyd\lambda \quad (22)$$

$$\leq Cn^{3/2}\int_{[0, \pi]^{2}} \frac{f(y)|g(\lambda) - g(y)|}{(1 + |\lambda - y|n)^{2}} dyd\lambda,$$

where the last inequality follows from (20) and $|(|(\lambda - y)\mod 2\pi| \geq ||\lambda| - |y||$, $\lambda, y \in \Pi$.

We now modify an argument from [18] (p. 99). Under Condition 2 of A.3 (with respect to $\beta_{1} > 0$), we may pick $0 < \gamma < 1/2$ so that $0 < \gamma^{*} \equiv \gamma + \beta_{1}(1 - \gamma) - \alpha < 1$ and $f(y)|g(\lambda) - g(y)| \leq C(\min\{y, \lambda\})^{-1+\gamma^{*}}|\lambda - y|^{-1-\gamma}$, $\lambda, y \in (0, \pi]$. We then bound (22) by

$$Cn^{-1/2-\gamma^{*}}\int_{0}^{\pi} \left(\int_{0}^{\infty} \frac{y^{-1+\gamma^{*}}}{(1 + |\lambda - y|)^{1+\gamma^{*}}} dy \right) d\lambda \leq Cn^{-1/2+\gamma} = o(1),$$

18
Lemma 7 With Assumption A.1, suppose g and h are real-valued, even Riemann integrable functions on Π such that $|g(\lambda)|, |h(\lambda)| \leq C|\lambda|^\beta$, $0 \leq \beta < 1$, $\alpha - \beta < 1/2$. Then as $n \to \infty$,

\[
\frac{2\pi}{n} \sum_{j=1}^{N} g(\lambda_j)h(\lambda_j)f_j^2(\lambda_j) \quad \text{and} \quad 2\frac{2\pi}{n} \sum_{j=1}^{N} g(\lambda_j)h(\lambda_j)(I_n(\lambda_j) - f(\lambda_j))^2 \xrightarrow{p} \int_\Pi ghf^2 \, d\lambda.
\]

proof: We consider the first Riemann sum above; convergence of the second sum can be similarly established. Since $(2\pi/n) \sum_{j=1}^{N} g(\lambda_j)h(\lambda_j)f_j^2(\lambda_j) \to \int_0^{\pi} ghf^2 \, d\lambda$ by the Lebesgue Dominated Convergence Theorem, it suffices to establish

\[
B_n = |E(S_n) - 4\pi/n \sum_{j=1}^{N} g(\lambda_j)h(\lambda_j)f_j^2(\lambda_j)| = o(1), \quad \text{Var}(S_n) = o(1)
\]

for $S_n = (2\pi/n) \sum_{j=1}^{N} g(\lambda_j)h(\lambda_j)f_j^2(\lambda_j)$. We show that $B_n = o(1)$; Lemma 11 in the Appendix shows $\text{Var}(S_n) = o(1)$. By $E(d_{nc}(\lambda)) = 0$ and the product theorem for cumulants,

\[
(2\pi n)^2 E(I_n^2(\lambda_j)) = \text{cum}^2(d_{nc}(\lambda_j), d_{nc}(\lambda_j)) + 2\text{cum}^2(d_{nc}(\lambda_j), d_{nc}(-\lambda_j)) + \text{cum}(d_{nc}(\lambda_j), d_{nc}(\lambda_j), d_{nc}(-\lambda_j), d_{nc}(-\lambda_j)).
\]

(23)

Then, $B_n \leq B_{1n} + B_{2n} + B_{3n}$ for terms B_{in} defined in the following.

Using that $n^{-1}2\pi L_{n0}(2\lambda_j) \leq (2j)^{-1} \mathbb{1}_{(j \leq \lfloor n/4 \rfloor)} + (n - 2j)^{-1} \mathbb{1}_{(j > \lfloor n/4 \rfloor)}$ by Lemma 1 and that $\text{cum}(d_{nc}(\lambda_j), d_{nc}(\lambda_j)) \leq C\lambda_j^{-\alpha}(\lambda_j^{-1} + \log(n)L_{n0}(2\lambda_j))$ by Lemma 3(i), we have for $B_{1n} = n^{-3} \sum_{j=1}^{N} |g(\lambda_j)h(\lambda_j)|\text{cum}^2(d_{nc}(\lambda_j), d_{nc}(\lambda_j))$ that

\[
B_{1n} \leq C n^{-1 + \max\{0,2\alpha - 2\beta\}} \log^2(n) \left(\sum_{j=1}^{\lfloor n/4 \rfloor} j^{-2} + \sum_{j=\lfloor n/4 \rfloor + 1}^{N} (n - 2j)^{-2} \right) = o(1).
\]

By Lemma 3(ii), $|\text{cum}(d_{nc}(\lambda_j), d_{nc}(\lambda_j), d_{nc}(-\lambda_j), d_{nc}(-\lambda_j))| \leq C \sqrt{n}(n^{1/2} + \log^3(n))\lambda_j^{-2\alpha}$ so that $B_{2n} = n^{-3} \sum_{j=1}^{N} |g(\lambda_j)h(\lambda_j)|\text{cum}(d_{nc}(\lambda_j), d_{nc}(\lambda_j), d_{nc}(-\lambda_j), d_{nc}(-\lambda_j))| = o(1)$. Pick $0 < \rho < \pi$. Using Lemma 3(i) and Lemma 2, for an arbitrarily small ρ we may bound

\[
\limsup B_{3n} \leq \limsup \left(\frac{C}{n} \sum_{\lambda_1 \leq \lambda_j < \rho} \lambda_j^{2\beta - 2\alpha} + \frac{R_{n\rho}}{n} \cdot \frac{C}{n} \sum_{\rho \leq \lambda_j \leq \lambda_N} \lambda_j^{2\beta - \alpha} \right) \leq C \int_0^{\rho} \lambda^{2\beta - 2\alpha} \, d\lambda
\]

for $B_{3n} = |4\pi/n \sum_{j=1}^{N} g(\lambda_j)h(\lambda_j)|\text{cum}_j - f(\lambda_j)||\text{cum}_j + f(\lambda_j)||$, where we denote $\text{cum}_j = \text{cum}(d_{nc}(\lambda_j), d_{nc}(-\lambda_j))/(2\pi n)$. As C does not depend on ρ above, $B_{3n} = o(1)$ follows.

Lemma 8 Suppose Assumption A.1 holds and $0 \leq \beta < 1$, $\alpha - \beta < 1/2$. Let $\omega = \max\{1/3, 1/4 + (\alpha - \beta)/2\}$. Then, $\max_{1 \leq j \leq N} I_n(\lambda_j)\lambda_j^\beta = o_p(n^{\omega})$ and $\max_{1 \leq j \leq N} f(\lambda_j)\lambda_j^\beta = o(n^{\omega})$.

19
\textbf{Proof:} It holds that $E(I_n^4(\lambda_j)) = \text{cum}(I_n^2(\lambda_j), I_n^2(\lambda_j)) + [E(I_n^2(\lambda_j))]^2 \leq C\gamma_j^{-4\alpha}$ by the product theorem for cumulants [see (33)], (23), and Lemma 3. For each $\epsilon > 0$, we then have

$$P\left(\max_{1 \leq j \leq N} I_n(\lambda_j)\lambda_j^\beta > en^\omega \right) \leq \frac{1}{en^\omega} \left(\sum_{j=1}^N \lambda_j^{4\beta} E(I_n^4(\lambda_j)) \right)^{1/4} = o(1),$$

which follows from $n^{-4\omega} \sum_{j=1}^N \lambda_j^{4\beta-4\alpha} = o(1)$. □

\textbf{Proof of Theorem 1.} We give a detailed argument for Theorem 1(i); parts (ii)-(iii) of Theorem 1 follow with some minor modifications. By Lemma 5, $0 \in \text{ch}^5\{\pi G_{\theta_0}(\lambda_j)I_n(\lambda_j)\}_{j=1}^N \subset \mathbb{R}^r$ with probability approaching 1 as $n \to \infty$ so that a positive $R_n(\theta_0)$ exists in probability. In view of (15), we can express the extrema $R_n(\theta_0) = \prod_{j=1}^N (1 + \gamma_j)^{-1}$ with $\gamma_j = t_{\theta_0}^\prime \pi G_{\theta_0}(\lambda_j)I_n(\lambda_j)$, $|\gamma_j| < 1$, where $t_{\theta_0} \in \mathbb{R}^r$ satisfies $Q_{1n}(\theta_0, t_{\theta_0}) = 0$ for the function $Q_{1n}(\cdot, \cdot)$ on $\Theta \times \mathbb{R}^r$ defined in (28). Let

$$W_{n\theta_0} = \frac{2\pi}{n} \sum_{j=1}^N G_{\theta_0}(\lambda_j)\theta_j^\prime I_n^2(\lambda_j), \quad J_{n\theta_0} = Q_{1n}(\theta_0, 0) = \frac{2\pi}{n} \sum_{j=1}^N G_{\theta_0}(\lambda_j)I_n(\lambda_j).$$

By Lemma 6 with $\int_{\Pi} G_{\theta_0} f d\lambda = \mathcal{M} = 0$ and Lemma 7, we have

$$|J_{n\theta_0}| = O_p(n^{-1/2}), \quad \|W_{n\theta_0} - W_{\theta_0}\| = o_p(1) \quad (25)$$

so that $W_{n\theta_0}$ is nonsingular in probability. Using Assumption A.2 and Lemma 8, it holds that

$$Y_n = \max_{1 \leq j \leq N} \pi \|G_{\theta_0}(\lambda_j)\| I_n(\lambda_j) = o_p(n^{1/2}), \quad \|t_{\theta_0}\| = O_p(n^{-1/2}) \quad (26)$$

where the order of $\|t_{\theta_0}\|$ follows as in [33, 34]. Note that by (26), $\max_{1 \leq j \leq N} |\gamma_j| \leq \|t_{\theta_0}\| Y_n = O_p(n^{-1/2})o_p(n^{1/2}) = o_p(1)$ holds. We algebraically write $0 = Q_{1n}(\theta_0, t_{\theta_0}) = J_{n\theta_0} - \pi W_{n\theta_0} t_{\theta_0} + (2\pi/n) \sum_{j=1}^N G_{\theta_0}(\lambda_j)I_n(\lambda_j)\gamma_j^2/(1 + \gamma_j)$ and solve for $t_{\theta_0} = (\pi W_{n\theta_0})^{-1} J_{n\theta_0} + \phi_n$ where

$$\|\phi_n\| \leq Y_n\|t_{\theta_0}\|^2\|W_{n\theta_0}^{-1}\| \left(\frac{2\pi}{n} \sum_{j=1}^N \|G_{\theta_0}(\lambda_j)\|^2 I_n^2(\lambda_j) \right) \left\{ \max_{1 \leq j \leq N} (1 + \gamma_j)^{-1} \right\} = o_p(n^{-1/2})$$

by Lemma 7, (26), and $\max_{1 \leq j \leq N} |\gamma_j| = o_p(1)$. When $\|t_{\theta_0}\|Y_n < 1$, we apply a Taylor’s expansion

$$\log(1 + \gamma_j) = \gamma_j - \gamma_j^2/2 + \Delta_j$$

for each $1 \leq j \leq N$. Then,

$$\ell_n(\theta_0) = 4 \sum_{j=1}^N \log(1 + \gamma_j) = 2 \left[2 \sum_{j=1}^N \gamma_j - \sum_{j=1}^N \gamma_j^2 \right] + 4 \sum_{j=1}^N \Delta_j,$$

$$2 \left[2 \sum_{j=1}^N \gamma_j - \sum_{j=1}^N \gamma_j^2 \right] = nJ_{n\theta_0}^\prime (\pi W_{n\theta_0})^{-1} J_{n\theta_0} - n\phi_n^\prime (\pi W_{n\theta_0})\phi_n.$$
By Lemma 6 and (25), $nJ'_{n\theta_0}(\pi W_{n\theta_0})^{-1}J_{n\theta_0} \xrightarrow{d} \chi_r^2$. We also have $n\phi'_n(\pi W_{n\theta_0})\phi_n = o_p(1)$ and we may bound $\sum_{j=1}^N |\Delta_j|$ by

$$\frac{n\|t_{\theta_0}\|^2 Y_n}{(1 - \|t_{\theta_0}\|^2 Y_n)^3}\sum_{j=1}^N \|G_{\theta_0}(\lambda_j)\|^2 I_j^2(\lambda_j) = nO_p(n^{-3/2})o_p(n^{1/2})O_p(1) = o_p(1),$$

from Lemma 7 and (26). Theorem 1(i) follows by Slutsky’s Theorem.

Under Theorem 1(ii)-(iii), $f_{\theta_0} = f$ holds and $R_{n,\pi}(\theta_0)$ exists in probability as $n \to \infty$ by Assumption A.5. We repeat the same arguments as above replacing each occurrence of $I_n(\lambda_j)$ with $I_n(\lambda_j) - f(\lambda_j)$ instead; we denote the resulting quantities with a tilde:

$$\tilde{W}_{n\theta_0} = \frac{2\pi}{n}\sum_{j=1}^N G_{\theta_0}(\lambda_j)G'_{\theta_0}(\lambda_j)(I_n(\lambda_j) - f(\lambda_j))^2, \quad \tilde{J}_{n\theta_0} = \frac{2\pi}{n}\sum_{j=1}^N G_{\theta_0}(\lambda_j)(I_n(\lambda_j) - f(\lambda_j)),$$

$\tilde{\gamma}_j, \tilde{\Delta}_j, \tilde{\phi}_n$, etc. All the previous points follow except for two, which are straightforward to remedy: by Lemma 7, $\|2\tilde{W}_{n\theta_0} - \tilde{W}_{\theta_0}\| = o_p(1)$ instead of (25); and in (27), we must write

$$\ell_{n,x}(\theta_0) = 2 \sum_{j=1}^N \log(1 + \tilde{\gamma}_j) = n\tilde{J}_{n\theta_0}(2\pi\tilde{W}_{n\theta_0})^{-1}\tilde{J}_{n\theta_0} - n\phi'_n(2^{-1}\pi\tilde{W}_{n\theta_0})\tilde{\phi}_n + 2\sum_{j=1}^N \tilde{\Delta}_j,$$

where $n\tilde{J}'_{n\theta_0}(2\pi\tilde{W}_{n\theta_0})^{-1}\tilde{J}_{n\theta_0} \xrightarrow{d} \chi_r^2$ by Lemma 6, $n\phi'_n(2^{-1}\pi\tilde{W}_{n\theta_0})\tilde{\phi}_n = o_p(1)$ and $\sum_{j=1}^N \tilde{\Delta}_j = o_p(1)$. □

Proof of Theorem 2. We require some additional notation. Define the functions on $\Theta \times \mathbb{R}^r$:

$$Q_{1n}(\theta, t) = \frac{2\pi}{n}\sum_{j=1}^N G_{\theta}(\lambda_j)I_n(\lambda_j), \quad Q_{2n}(\theta, t) = \frac{2\pi}{n}\sum_{j=1}^N I_n(\lambda_j)(\partial G_{\theta}(\lambda_j)/\partial \theta)' t.$$

Also define versions $\tilde{Q}_{1n}(\theta, t)$ and $\tilde{Q}_{2n}(\theta, t)$ by replacing each $I_n(\lambda_i)$ with $I_n(\lambda_i) - f(\lambda_i)$ in (28) and adding the extra term $-(\partial f(\lambda_i)/\partial \theta)G_{\theta}(\lambda_i)t$ to the numerator of Q_{2n}. We use the following MELE existence result to prove Theorem 2; see [32] for its proof.

Lemma 9 Under the assumptions of Theorem 2,

(i) the probability that $R_n(\theta)$ attains a maximum $\hat{\theta}_n$, which lies in the ball B_n and satisfies $Q_{1n}(\hat{\theta}_n, t_{\hat{\theta}_n}) = 0$ and $\ell_{n}(\hat{\theta}_n)/\ell_{\theta_0} = 2nQ_{2n}(\hat{\theta}_n, t_{\hat{\theta}_n}) = 0$, converges to 1 as $n \to \infty$.

(ii) Under Theorem 2(ii) or (iii) assumptions, result (i) above holds for $R_{n,\pi}(\theta)$ with respect to $\hat{\theta}_n, \ell_{n,\pi}, Q_{1n}(\hat{\theta}_n, t_{\hat{\theta}_n}, \ell_{n,\pi})$, $2^{-1}\tilde{Q}_{2n}(\hat{\theta}_n, t_{\hat{\theta}_n}, \ell_{n,\pi})$ (replacing $\hat{\theta}_n, \ell_{n}, Q_{1n}(\hat{\theta}_n, t_{\hat{\theta}_n}, \ell_{n,\pi})$, $Q_{2n}(\hat{\theta}_n, t_{\hat{\theta}_n})$).

We now establish the asymptotic normality of $\hat{\theta}_n$ following arguments in [38]. Expanding $Q_{1n}(\hat{\theta}_n, t_{\hat{\theta}_n}), Q_{2n}(\hat{\theta}_n, t_{\hat{\theta}_n})$ at $(\theta_0, 0)$ with Lemma 9, we have that

$$\Sigma_n\left(\begin{array}{c} t_{\theta_0} \\ \hat{\theta}_n - \theta_0 \end{array}\right) = \left[\begin{array}{c} -J_{n\theta_0} + E_{1n} \\ E_{2n}\end{array}\right], \quad \Sigma_n = \left[\begin{array}{ccc} \partial Q_{1n}(\theta_0, 0)/\partial t & \partial Q_{1n}(\theta_0, 0)/\partial \theta \\ \partial Q_{2n}(\theta_0, 0)/\partial t & \partial Q_{2n}(\theta_0, 0)/\partial \theta \end{array}\right].$$
Lemma 6, \(\theta \)

with \(J_{n\theta_0}, W_{n\theta_0} \) as in (24). In addition, it can be shown that

\[
\frac{\partial Q_{1n}(\theta_0, 0)}{\partial \theta} = -\pi W_{n\theta_0}, \quad \frac{\partial Q_{2n}(\theta_0, 0)}{\partial \theta} = \left[\frac{\partial Q_{1n}(\theta_0, 0)}{\partial \theta} \right]', \quad \frac{\partial Q_{2n}(\theta_0, 0)}{\partial \theta} = 0.
\]

Using (2\(\pi/n \))\(\sum_{j=1}^{N} f(\lambda_j) \frac{\partial G_{\theta_0}(\lambda_j)}{\partial \theta} I_n(\lambda_j) \to D_{\theta_0}/2 \) by the Dominated Convergence Theorem and a modification of the proof for Lemma 7. Applying this convergence result with (25),

\[
\Sigma_n^{-1} = \begin{bmatrix} A_{11n} & A_{12n} \\ A_{21n} & A_{22n} \end{bmatrix} \frac{1}{2\pi} \begin{bmatrix} -2\pi U_{\theta_0} & W_{\theta_0}^{-1} D_{\theta_0} V_{\theta_0} \\ V_{\theta_0} D_{\theta_0}' W_{\theta_0}^{-1} & 2\pi V_{\theta_0} \end{bmatrix}
\]

holds. One may verify \(\|E_{1n}\|, \|E_{2n}\| = O_p(\delta_n n^{-1-\eta} \sum_{j=1}^{N} \max \{ I_n(\lambda_j), I_n(\lambda_j) \}) = o_p(\delta_n) \) for \(\delta_n = \|t_{\theta_0} - \theta_0\| \) and \(\Psi_{jn} = n^{-\eta} \lambda_j^{-\delta} + \lambda_j^{2-\delta} \). By Lemma 6, \(\sqrt{n} J_{n\theta_0} \to N(0, \pi W_{\theta_0}) \) and so it follows that \(\delta_n = O_p(n^{-1/2}) \). We then have that

\[
\sqrt{n}(\tilde{\theta}_n - \theta_0) = -\sqrt{n} A_{21n} J_{n\theta_0} + o_p(1) \frac{d}{d \theta} N(0, V_{\theta_0}),
\]

\[
\sqrt{n}(t_{\theta_0} - 0) = -\sqrt{n} A_{11n} J_{n\theta_0} + o_p(1) \frac{d}{d \theta} N(0, V_{\theta_0}).
\]

To show the normality of \(\tilde{\theta}_{n,x} - \theta_0 \) under Theorem 2(ii)-(i) conditions, we substitute \(\tilde{Q}_{1n}, \tilde{Q}_{2n} \) for \(Q_{1n}, Q_{2n} \) above and, using Lemma 9, repeat the same expansion with an analogously defined matrix \(\tilde{\Sigma}_n \) (having components \(\tilde{A}_{ij} \) in \(\tilde{\Sigma}_n^{-1} \)). Note that \(\partial \tilde{Q}_{1n}(\theta_0, 0)/\partial \theta = \partial Q_{1n}(\theta_0, 0)/\partial \theta - \tilde{D}_{n\theta_0} \) where by the Lebesgue Dominated Convergence Theorem as \(n \to \infty \)

\[
\tilde{D}_{n\theta_0} = \frac{2\pi}{n} \sum_{i=1}^{N} \frac{\partial [G_\theta(\lambda_i) f_\theta(\lambda_i)]}{\partial \theta} \bigg|_{\theta=\theta_0} \to \frac{1}{2} \frac{\partial}{\partial \theta} \left[\int_{\Pi} f_\theta G_\theta d\lambda \right] \bigg|_{\theta=\theta_0} = 0,
\]

since the theorem conditions justify exchanging the order of differentiation/integration of \(f_\theta G_\theta \) at \(\theta_0 \) and \(\int_{\Pi} f_\theta G_\theta d\lambda = \mathcal{M} \) is constant in a neighborhood of \(\theta_0 \). The convergence result in (29) follows for \(\Sigma_n^{-1} \) upon replacing \(-2\pi U_{\theta_0}, 2\pi V_{\theta_0} \) with \(-4\pi U_{\theta_0}, \pi V_{\theta_0} \). By Lemma 6, \(\sqrt{n} J_{n\theta_0} \to \sqrt{n} \tilde{Q}_{1n}(\theta_0, 0) \to N(0, \pi W_{\theta_0}) \) so that (30) holds for \(\sqrt{n}(\tilde{\theta}_{n,x} - \theta_0) \) and

\[
\sqrt{n}(t_{\theta_0} - 0)/2 \] after replacing \(J_{n\theta_0}, A_{21n}, A_{11n} \) with \(\tilde{J}_{n\theta_0}, \tilde{A}_{21n}, \tilde{A}_{11n}/2 \).

\(\square \)

Proof of Theorem 3. To establish (i), assume WLOG that \(G_\theta(\lambda) \) is real-valued and increasing in \(\theta \) (i.e., \(r = 1 \)). For \(\theta \in \Theta \), define \(E_{n,\theta} = \frac{1}{\pi} \sum_{j=1}^{N} \{ I_n(\lambda_j) G_\theta(\lambda_j) - \mathcal{M} \} \) where \(\mathcal{M} = \int_0^\pi G_{\theta_0} f d\lambda \). Following the proof of Lemma 7, \(E_{n,\theta} \to \int_0^\pi G_\theta f d\lambda - \mathcal{M} \) holds for each \(\theta \) so that, for an arbitrarily small \(\epsilon > 0 \), \(P(E_{n,\theta_0}-\epsilon < \int_0^\pi G_\theta f d\lambda - \mathcal{M} < E_{n,\theta_0}+\epsilon) \to 1 \) by the monotonicity of \(G_\theta \). When the event in the probability statement holds, there exists \(\hat{\theta}_n \in \Theta \) where \(E_{n,\hat{\theta}_n} = 0 \) by the continuity of \(G_\theta \) and \(L_n(\hat{\theta}_n) = (\pi/N)^N \) follows in (13). For any \(\theta \) with
\[|\theta - \theta_0| \geq \epsilon, \text{ we have that } E_{n, \theta} \neq 0 \text{ implying } L_n(\theta) < L_n(\hat{\theta}_n). \] Hence, a global maximum \(\hat{\theta}_n \) satisfies \(P(|\hat{\theta}_n - \theta_0| < \epsilon) \rightarrow 1. \)

For \((ii), \) we consider \(G_{\hat{\theta}} \equiv G_{\hat{\theta}}^w \) and \(\mathcal{M} \equiv \mathcal{M}_w \) from \((11). \) Suppose \(\theta^*_n \) and \(\theta^* \) denote the minimums of \(W_n(\theta) = \frac{1}{4} \log \pi^2 + \frac{1}{4\pi N} \sum_{j=1}^N \pi I_n(\lambda_j) f_{\theta}^{-1}(\lambda_j) \) and \(W(\theta) \), respectively. Using Lemma 4 with arguments as in Theorem 1 of \([21], \) it follows that \(\theta^*_n \xrightarrow{p} \theta^*. \) Since \(\theta^* \) is interior to \(\Theta, \) it holds that \(\partial W_n(\theta_n^*)/\partial \theta = 0, \) which implies \(E_{n, \theta_n^*} = 0 \) under the above definition of \(E_{n, \theta} \) with \(G_{\theta}^w, \mathcal{M}_w. \) Hence, \(L_n(\theta_n^*) = (\pi/N)^N \) and, using Lemma 4 with arguments of Lemma 1 of \([21], \) \(0 = E_{n, \hat{\theta}_n^*} \xrightarrow{p} \int_{\Theta}^{\Phi} G_{\hat{\theta}}^w f d\lambda - \mathcal{M} \) holds whereby \(\theta^* = \theta_0 \) by uniqueness. We then have a global maximum \(\hat{\theta}_n = \theta_n^* \) for which \(\hat{\theta}_n \xrightarrow{p} \theta_0. \)

Proof of Theorem 4. Considering Theorem 4\((i), \) let \(P_X = X(X'X)^{-1}X' \) and \(I_{rr} \) denote the projection matrix for a given matrix \(X \) and the \(r \times r \) identity matrix. Writing \((\pi W_{\theta_0}/n)^{1/2} Z_{\theta_0} = J_{n\theta_0} + D_{\theta_0}(\theta - \theta_0)/2, \) it holds that \(|\ell(\hat{\theta}_n) - Z_{\theta_0}^* Z_{\theta_0}| = o_p(1) \) (see Theorem 3, \([32], \)) so that \(\ell_n(\hat{\theta}_n) = Z_{\theta_0}^* (I_{rr} - P_{W_{\theta_0}}^{-1} - D_{\theta_0}) Z_{\theta_0} + o_p(1) \) using \((29)-(30). \) By \((27), \) \(\ell_n(\theta_0) = Z_{\theta_0}^* Z_{\theta_0} + o_p(1) \) where \(Z_{\theta_0} \xrightarrow{d} \mathcal{N}(0, I_{rr}) \) by Theorem 4. Theorem 4 follows since \(P_{W_{\theta_0}^{-1/2} D_{\theta_0}}, I_{rr} - P_{W_{\theta_0}^{-1/2} D_{\theta_0}} \) are orthogonal idempotent matrices with ranks \(p, r - p. \)

Proofs of Corollaries 1 and 2. \([32] \) gives a detailed proof of Corollary 1 and Corollary 2 follows by modifying arguments from Corollary 5 of \([38]. \)

Proof of Theorem 5. \([32] \) provides details where the most important, additional distributional results required are \((2\pi/\sqrt{n}) \sum_{j=1}^N Y_{n\theta_0,j} \xrightarrow{d} \mathcal{N}(0, \pi W_{\theta_0}), (2\pi/n) \sum_{j=1}^N Y_{n\theta_0,j}^\prime \xrightarrow{p} W_{\theta_0}/2 \) for \(Y_{n\theta_0,j} = (I_{nc}(\lambda_j)/\pi W_{\theta_0}(\lambda_j), \pi, I_{nc}(\lambda_j) G_{\theta_0}^w(\lambda_j) - \mathcal{M}_w) \) and

\[
W_{\theta_0}^* = \begin{bmatrix} W_{\theta_0}^* & 0 \\ 0 & W_{\theta_0}^{**} \end{bmatrix}, \quad W_{\theta_0} = \begin{bmatrix} 10\pi & 4\pi \\ 4\pi & 2\pi \end{bmatrix}, \quad W_{\theta_0}^{**} = \left(\int_{\Pi} f^2_{\theta_0} \frac{\partial f_{\theta_0}}{\partial \theta_0} \frac{\partial f_{\theta_0}}{\partial \theta_0} d\lambda \right)_{i,j=1,...,p-1}.
\]

The convergence results can be shown using arguments in \([3] \) and \([17]. \)

10 Appendix

Lemma 10 Suppose Assumptions A.1-A.2 hold for a real-valued, even function \(g \) satisfying Condition 2 of Assumption A.3. Define \(c_n g(\lambda) = \int_{\Pi} K_n(\lambda - y) g(y) \, dy, \lambda \in \Pi, \) as the nth Cesaro mean of the Fourier series of \(g \) and let \(C_n = \int_{0}^{\pi} c_n g(\lambda) I_{nc}(\lambda) \, d\lambda. \) Then, as \(n \to \infty, \)

\[
\sqrt{n} \left| C_n - \int_{0}^{\pi} g(\lambda) I_{nc}(\lambda) \, d\lambda \right| = o_p(1), \quad \sqrt{n} \left| \frac{2\pi n}{n} \sum_{j=1}^{N} g(\lambda_j) I_{n}(\lambda_j) - C_n \right| = o_p(1). \quad (31)
\]
Assumptions A.1-A.2. For a
dit will follow that \(\sqrt{\lambda} \). From this and arguments from (22), we have

\[
\text{proof:} \quad \text{Assume have establish the first part of (31). Using } \int \Pi K_n(\lambda - y)dy = 1, E(I_{nc}(\lambda)) = \int \Pi K_n(\lambda - y)f(y)dy, \text{ and Fubini’s Theorem, we write } 2E|\int_0^\pi (c_n g - g) I_{nc} d\lambda| \text{ as}
\]

\[
E \left| \int \Pi I_{nc}(\lambda) \left[\int \Pi K_n(\lambda - y)[g(y) - g(\lambda)] dy \right] d\lambda \right|
\leq \int \Pi K_n(\lambda - z)K_n(\lambda - y)f(z)[g(y) - g(\lambda)] dz dy d\lambda \leq t_{1n} + t_{2n},
\]

\[
t_{1n} = \int \Pi ^2 K_n(\lambda - z)f(z)[g(z) - g(\lambda)] dz d\lambda, \quad t_{2n} = \int \Pi ^3 K_n(\lambda - z)K_n(y - \lambda)f(z)[g(y) - g(z)] d\lambda dz dy d\lambda.
\]

It suffices to show \(\sqrt{n} t_{2n} = o(1) \) since arguments from (22) provide \(\sqrt{n} t_{1n} = o(1) \). Applying Lemma 1(iv) and (20) sequentially, we bound \(\int \Pi K_n(\lambda - z)K_n(y - \lambda) d\lambda \) by

\[
\frac{C}{n^2} \int \Pi L_n^2(\lambda - z) L_n^2(y - \lambda) d\lambda \leq \frac{C n}{(1 + |(y - z) \text{ mod } 2\pi/\pi|^2}.
\]

From this and arguments from (22), we have

\[
\sqrt{n} t_{2n} \leq C n^{3/2} \int \Pi ^2 \frac{f(z)[g(y) - g(z)]}{(1 + |(y - z) \text{ mod } 2\pi/\pi|^2} dz dy = o(1).
\]

For the second part of (31), we use \((2\pi/n) \sum_{j=-N}^{|n/2|} c_n g(\lambda_j) I_{nc}(\lambda_j) = 2C_n \) and write

\[
2\sqrt{n} \left| \frac{2\pi}{n} \sum_{j=1}^N g(\lambda_j) I_n(\lambda_j) - C_n \right| \leq 4\sqrt{n} (t_{3n} + t_{4n}),
\]

\[
t_{3n} = n^{-1} \sum_{j=1}^N I_n(\lambda_j) |c_n g(\lambda_j) - g(\lambda_j)|, \quad t_{4n} = n^{-1} (|c_n g(0)|I_{nc}(0) + |c_n g(\pi)|I_{nc}(\pi)).
\]

We have \(\sqrt{n} t_{4n} = o_p(1) \) from E[I_{nc}(0)] \(\leq C n^\alpha, \quad |c_n g(0)| \leq C n^{-\beta} \) and \(|c_n g(\pi)|E[I_{nc}(\pi)] \leq C \) by Assumptions A.1-A.2. For a \(C > 0 \) independent of \(1 \leq j \leq N \) \(n > 3 \), if we establish

\[
|c_n g(\lambda_j) - g(\lambda_j)| \leq C \lambda_j^{\beta_1} \left(\frac{\log(n)}{j} + \frac{\Pi (j > n/4)}{n - 2j} \right), \quad 1 \leq j \leq N,
\]

it will follow that \(\sqrt{n} t_{3n} \leq C n^{-1/2} \log(n)(\max_{1 \leq j \leq N} I_n(\lambda_j) \lambda_j^{\beta_1} \sum_{j=1}^n j^{-1} = o_p(1) \) from Lemma 8.

Fix \(1 \leq j \leq N \). To prove (32), we decompose the difference

\[
|c_n g(\lambda_j) - g(\lambda_j)| = \int \Pi K_n(y)[g(\lambda_j - y) - g(\lambda_j)] dy \leq \int_0^\pi d_{jn}^+(y) dy + \int_0^\pi d_{jn}^-(y) dy,
\]

where \(d_{jn}^+(y) = K_n(y)[g(\lambda_j + y) - g(\lambda_j)], \quad d_{jn}^-(y) = K_n(y)[g(\lambda_j - y) - g(\lambda_j)]. \) We separately bound the last two absolute integrals using (20), \(|g(\lambda_j - y)| \leq C \sqrt{y-1+\beta} |z| y \) for
0 < |y| ≤ |z| ≤ π, and that λ_j > π/2 if and only if j > n/4. Using Lemma 1, we bound

\[
\begin{align*}
\left| \int_0^{1/n} d_{j_n}^{+}(y) \, dy \right| & \leq C \lambda_j^{1+\beta_j} \int_0^{1/n} L_n(0)(y) \, dy \leq C_j^{-1} \lambda_j^{\beta_j} \\
\left| \int_{\pi-\lambda_j}^{\pi} d_{j_n}^{+}(y) \, dy \right| & \leq C \lambda_j^{1+\beta_j} \int_{\pi-\lambda_j}^{\pi} (ny) \, dy \leq C_j^{-1} \log(n) \lambda_j^{\beta_j},
\end{align*}
\]

and if λ_j ≤ π/2,

\[
\left| \int_{\pi-\lambda_j}^{\pi} d_{j_n}^{+}(y) \, dy \right| \leq C n^{-1} L_0^2(\pi/2) \int_{\pi-\lambda_j}^{\pi} 1 \, dy \leq C n^{-1} \lambda_j.
\]

If λ_j > π/2, we use a substitution u = 2π − λ_j − y and that 1 ≤ n − 2j ≤ N to find

\[
\begin{align*}
\left| \int_{\pi-\lambda_j}^{\pi-2\lambda_j} d_{j_n}^{+}(y) \, dy \right| & = \left| \int_{\lambda_j}^{\pi} K_n(2\pi - (u - \lambda_j))|g(u) - g(\lambda_j)| \, du \right| \\
& \leq C \lambda_j^{\beta_j} \int_{\lambda_j}^{\pi} (u - \lambda_j)^n \, du \leq C n^{-1} \log(n) \lambda_j^{\beta_j},
\end{align*}
\]

\[
\begin{align*}
\left| \int_{2\pi-2\lambda_j}^{\pi} d_{j_n}^{+}(y) \, dy \right| & \leq C \int_{\pi-\lambda_j}^{\pi} K_n(2\pi - (u - \lambda_j)) \, du \leq C(n-2j)^{-1} \lambda_j^{\beta_j}.
\end{align*}
\]

Hence, the bound in (32) applies to | \int_0^{1/n} d_{j_n}^{+} dy |; the same can be shown for | \int_0^{\pi} d_{j_n}^{+} dy | by considering separate integrals over intervals: (0, 1/n]; (1/n, λ_j/2]; (λ_j/2, λ_j]; and (λ_j, π] if λ_j > π/2; or (λ_j, 2λ_j]; (2λ_j, π] if λ_j ≤ π/2. See Lemma 12 of [32]. □

Lemma 11 With Assumption A.1, suppose g, h are real-valued, even Riemann integrable functions on Π such that |g(λ)|, |h(λ)| ≤ C|λ|^β, 0 ≤ β < 1, α − β < 1/2. Then as n → ∞, V_n = Var[(2π/n) \sum_{j=1}^{N} g(\lambda_j)h(\lambda_j)I_n^2(\lambda_j)] = o(1).

proof: We expand V_n and then bound V_n ≤ V_{1n} + V_{2n} with V_{1n} and V_{2n} defined as

\[
\begin{align*}
\frac{C}{n^6} \sum_{j=1}^{N} (λ_j)^{4\beta} \text{cum}(|d_n(\lambda_j)|^4, |d_n(\lambda_j)|^4), \quad \frac{C}{n^6} \sum_{1 \leq i < j \leq N} (λ_i λ_j)^{2\beta} \text{cum}(|d_n(\lambda_i)|^4, |d_n(\lambda_j)|^4),
\end{align*}
\]

respectively. Let \(\mathcal{P} \) be the set of all indecomposable partitions \(P \) of the labels in the two row table \(\{a_{st}\}, s = 1, 2, t = 1, 2, 3, 4 \) (Section 2.3, [6]). We write the elements of a partition \(P = (P_1, \ldots, P_m), 1 \leq m \leq 7, \) with each \(P_i \subset \{a_{st}\} = \bigcup_{i=1}^{m} P_i, P_i \cap P_j = \emptyset \) if \(i \neq j \). For \(1 \leq i \leq j \leq \mathcal{N} \), define \(a_{ij} = a_{ij} = -a_{ij} = -a_{ij} = \lambda_i, a_{ij} = a_{ij} = -a_{ij} = -a_{ij} = \lambda_j \). By the product theorem for cumulants,

\[
\text{cum}(|d_n(\lambda_i)|^4, |d_n(\lambda_j)|^4) = \sum_{P \in \mathcal{P}} \text{cum}_{ij}(P), \quad \text{cum}_{ij}(P) = \prod_{u=1}^{m} \text{cum}(d_n(a_{ij}^u) : a_{st} \in P_u).
\]

(33)

Because E(d_{nc}(\lambda)) = 0, we need only consider those partitions \(\mathcal{P}^* = \{ P = (P_1, \ldots, P_m) \in \mathcal{P} : 1 \leq |P_1| \leq \cdots \leq |P_m|, 1 \leq m \leq 6 \} \) where each set in the partition has two or more elements \(a_{st} \), using \(|B| \) to denote the size of a finite set \(B \). Defining \(U_{1n}(P) = \binom{n}{2} \)}
$n^{-6}\sum_{j=1}^{N}(\lambda_j)^{4\beta}|\text{cum}_{ijn}(P)|$ and $U_{2n}(P) = n^{-6}\sum_{1\leq i<j\leq N}(\lambda_i\lambda_j)^{2\beta}|\text{cum}_{ijn}(P)|$, we can bound $V_{in} \leq C\sum_{P \in \mathcal{P}^*} U_{in}(P)$, $i = 1, 2$, so that it suffices to show

$$U_{in}(P) = o(1), \quad P \in \mathcal{P}^*, \quad i = 1, 2.$$ \hspace{1cm} (34)

By Lemma 3, we have $|\text{cum}_{ijn}(P)| \leq Cn^4\lambda_j^{4\alpha}$ for $P \in \mathcal{P}^*, 1 \leq j \leq N$ so that $U_{1n}(P) \leq Cn^{\max(0,2\alpha-2\beta)-1}(n^{-1}\sum_{j=1}^{N}\lambda_j^{2\beta-2\alpha}) = o(1)$ since $\alpha - \beta < 1/2$. Hence, (34) is established for U_{1n} and $V_{1n} = o(1)$.

We now show (34) for $U_{2n}(P)$ by bounding $|\text{cum}_{ijn}(P)|$, over $1 \leq i < j \leq N$, for several cases of $P = (P_1, \ldots, P_m) \in \mathcal{P}^*$. These cases are: $m = 1$; $m = 2$, $|P_2| = 6$; $m = 2$, $|P_2| = 5$; $m = 2$, $|P_2| = 4$; $m = 3$, $|P_3| = |P_2| = 3$; $m = 3$, $|P_3| = 4$, $|P_2| = 2$. The last (seventh) case $m = 4$, $|P_1| = |P_2| = |P_3| = |P_4| = 2$ has the following subcases: (7.1) there exist $k_1 \neq k_2$ where $\sum_{a_{sl} \in P_{k_1}} a_{ij}^{st} = 0 = \sum_{a_{st} \in P_{k_2}} a_{ij}^{st}$; (7.2) there exists exactly one k where $\sum_{a_{st} \in P_k} a_{ij}^{st} = 0$; (7.3) for each k, $\sum_{a_{st} \in P_k} a_{ij}^{st} \neq 0$ holds and for some k_1, k_2, $\sum_{a_{st} \in P_{k_1}} a_{ij}^{st} = 2\lambda_i$, $\sum_{a_{st} \in P_{k_2}} a_{ij}^{st} = 2\lambda_j$; (7.4) for each k, $|\sum_{a_{st} \in P_k} a_{ij}^{st}| \notin \{0, 2\lambda_i, 2\lambda_j\}$.

The first six cases follow from Lemma 3 and (20). For example, under cases 3 or 4, we apply Lemma 3(iii) and (20) twice to bound $|\text{cum}_{ijn}(P)| \leq C\{n^{3/2} + n \log^4(n)\}^2(\lambda_i\lambda_j)^{-2\alpha}$ and then $U_{2n}(P) \leq Cn^{-1}(n^{-1}\sum_{j=1}^{N}\lambda_j^{2\beta-2\alpha})^2 = o(1)$. See Lemma 13 of [32] for details.

To treat case 7, we define some sets. For $0 < \rho < \pi/2$, let $A = \{(i, j) : 1 \leq i < j \leq N\}$, $A_\rho = \{(i, j) \in A : \lambda_j < \rho\}$, $A^\rho = \{(i, j) \in A : \lambda_j \geq \rho\}$, $A^\rho/2 = \{(i, j) \in A : i + j > n/2\}$ and $A_n/2 = \{(i, j) \in A : i + j \leq n/2\}$. We will also use that for integers $j > i \geq 1$,

$$\frac{1}{i(j-i)} \leq \frac{2}{j} \quad \text{if} \quad i = 1 \text{ or } j(i-1) > i^4; \quad \text{otherwise,} \quad \frac{1}{i} < \frac{2}{j}. \hspace{1cm} (35)$$

For subcase 7.1, define $A_{\rho_1} = \{(i, j) \in A_\rho : i = 1 \text{ or } j(i-1) > i^2\}$ and $A_{\rho_2} = A_\rho \setminus A_{\rho_1}$.

subcase 7.1: WLOG say $k_1 = 1, k_2 = 2$. We have $|\sum_{a_{st} \in P_1} a_{ij}^{st}| = |\sum_{a_{st} \in P_4} a_{ij}^{st}| \in \{\lambda_j - \lambda_i, \lambda_j + \lambda_i\}$ and, by Lemma 3(i), $\prod_{k=1}^{2} |\text{cum}(d_{ne}(a_{st}) : a_{st} \in P_k)| \leq Cn^2(\lambda_i\lambda_j)^{-\alpha}$. Fix $0 < \rho < \pi/2$. If $|\sum_{a_{st} \in P_k} a_{ij}^{st}| = \lambda_j - \lambda_i$, $k = 3, 4$, then by Lemma 1(i), Lemma 2 and (20) (for the sum involving $\lambda_j \geq \rho$) or Lemma 1(i), Lemma 3(i) and (20) (for the sum with $\lambda_j < \rho$):

$$U_{2n}(P) \leq \frac{C(\rho)}{n^4} \sum_{A_\rho} \lambda_i^{\beta-\alpha} \left[\frac{n}{j-i} + R_{n\rho} \right]^2 + \frac{C(\rho)}{n^4} \sum_{A_\rho} \lambda_i^{\beta-3\alpha} \lambda_j^{2\beta-\alpha} \left[\lambda_j^{-1} + \frac{n}{(j-i)^2} \right]^2 \equiv u_{1n}(\rho) + u_{2n}(\rho),$$

$$u_{1n}(\rho) \leq C(\rho) \left(n^{-1+\max(0,\alpha-\beta)} \sum_{j=1}^{n} j^{-2} \right) \left(n^{-1} R_{n\rho} \right)^2 \left(\frac{1}{n} \sum_{j=1}^{n} \lambda_j^{\beta-\alpha} \right) = o(1),$$

26
with some fixed $\max\{\alpha, 1/2\} < d < 1$. Using (35) on the sums over $A_{\rho 1}$ and $A_{\rho 2}$:

$$u_{2n}(\rho) \leq C \left(\frac{1}{n} \sum_{\lambda_1, \lambda_2 \leq \lambda < \rho} \lambda_i^{2\beta-2\alpha} \right)^2 + \frac{C}{n^2} \sum_{A_{\rho 1}} \left(\lambda_i \lambda_j \right)^{2\beta-2\alpha} + \frac{C}{n^2} \sum_{A_{\rho 2}} \left(\lambda_i \lambda_j \right)^{2\beta-2\alpha}$$

$$\leq C \left(\frac{1}{n} \sum_{\lambda_1, \lambda_2 \leq \lambda < \rho} \lambda_i^{2\beta-2\alpha} \right)^2.$$

Then, $\lim \left(u_{1n}(\rho) + u_{2n}(\rho) \right) \leq C \left(\int_0^\rho \lambda^{2\beta-2\alpha} d\lambda \right)^2 = C \rho^{2+4\beta-4\alpha}$ for a C that does not depend on $0 < \rho < \pi/2$. Hence, $U_{2n}(P) = o(1)$ since $2 + 4\beta - 4\alpha > 0$. If $|\sum_{a_{\sigma t} \in P_k} a_{\sigma t}^{ij}| = \lambda_i + \lambda_j, k = 3, 4$, we repeat essentially the same steps as above to show $U_{2n}(P) \leq u_{3n}(\rho) + u_{4n}(\rho)$ where $u_{4n}(\rho) \leq C u_{2n}(\rho)$ and, using Lemma 1(ii) to expand $u_{3n}(\rho) = C(\rho)/n^4 \sum_{\lambda} \lambda_i^{2\alpha} |L_{n0}(\lambda_i + \lambda_j) + R_{n0}|^2$,

$$u_{3n}(\rho) \leq \frac{C(\rho)}{n^2} \left(\sum_{A_{n/2}} \lambda_i^{\beta-\alpha} \left(\frac{1}{n - j - i} \right)^2 + \sum_{A_{n/2}} \lambda_j^{\beta-\alpha} \left(\frac{1}{n + j} \right)^2 + (R_{n0})^2 \left(\sum_{j=1}^N \lambda_i^{\beta-\alpha} \right) \right)$$

$$\leq C(\rho) \left(n^{-1+\max\{0,\alpha-\beta\}} \sum_{j=1}^n j^{-2} + (n^{-1} R_{n0})^2 \left(\sum_{j=1}^N \lambda_{i,j}^{\beta-\alpha} \right) \right) = o(1).$$

Thus, $U_{2n}(P) = o(1)$ in this case.

subcase 7.2: WLOG we assume $|\sum_{a_{\sigma t} \in P_1} a_{\sigma t}^{ij}| = \lambda_j + \lambda_i, |\sum_{a_{\sigma t} \in P_2} a_{\sigma t}^{ij}| = \lambda_j - \lambda_i$. Applying Lemma 1(ii) with Lemma 3(i) gives $\prod_{k=3}^4 |\sum_{c_{nc} a_{\sigma t}^{ij}}| \leq C n^2 (\lambda_i - \lambda_j)^{-\alpha}$. Using this along with Lemma 2, Lemma 3(i) and (20) for a fixed $0 < \rho < \pi/2$, we may bound $U_{2n}(P) \leq u_{5n}(\rho) + u_{6n}(\rho)$ where

$$u_{5n} = C(\rho) / n^4 \sum_{A_{n/2}} \lambda_i^{\beta-\alpha} \left[L_{n0}(\lambda_i + \lambda_j) + R_{n0} \right] \left(\frac{n}{j-i} + R_{n0} \right)$$

and $u_{6n}(\rho) = C n^{-4} \sum_{\lambda} \left(\lambda_i \lambda_j \right)^{2\beta-\alpha} \lambda_i^{-2\alpha} \left[\lambda_i^{-1} + L_{n1}(\lambda_i + \lambda_j) \right] \left[\lambda_j^{-1} + L_{n1}(\lambda_i - \lambda_j) \right]$. By Lemma 1(ii), we can show $u_{6n}(\rho) \leq C u_{2n}(\rho)$ while, for large n, $u_{5n}(\rho)$ is bounded by

$$\frac{C(\rho)}{n^2} \left(\sum_{A_{n/2}} \lambda_i^{\beta-\alpha} \left(\frac{1}{n - j - i} + R_{n0} \right) + \sum_{A_{n/2}} \lambda_j^{\beta-\alpha} \left(\frac{1}{n + j} + R_{n0} \right) \right) + R_{n0} \sum_{j=1}^N \lambda_{j-i}^{\beta-\alpha}$$

$$\leq C(\rho) \left(n^{-1+\max\{0,\alpha-\beta\}} \sum_{j=1}^n j^{-2} + R_{n0} \left(\sum_{j=1}^N \lambda_{i,j}^{\beta-\alpha} \right) \right) = o(1),$$

using $n - j - i \geq j - i$ above. Hence, $U_{2n}(P) = o(1)$.

subcases 7.3-7.4: For subcase 7.3, there exists some k such that $|\sum_{a_{\sigma t} \in P_k} a_{\sigma t}^{ij}| = \lambda_j - \lambda_i$ or $\lambda_j + \lambda_i$. Note $|\sum_{c_{nc} a_{\sigma t}^{ij}}| \leq C n \lambda_j^{-\alpha}$, $|\sum_{c_{nc} a_{\sigma t}^{ij}}| \leq C n \lambda_j^{-\alpha}$ by Lemma 3(i). For subcase 7.4, the possible partitions P are: $|\sum_{a_{\sigma t} \in P_k} a_{\sigma t}^{ij}| = \lambda_j + \lambda_i$ for each k or $\lambda_j - \lambda_i$ for each k or there exist k_1, k_2 where $|\sum_{a_{\sigma t} \in P_{k_1}} a_{\sigma t}^{ij}| = \lambda_j + \lambda_i, |\sum_{a_{\sigma t} \in P_{k_2}} a_{\sigma t}^{ij}| = \lambda_j - \lambda_i$. Arguments as in subcases 7.1-7.2 can show (34) holds; see Lemma 13 of [32]. □
Acknowledgments

The authors wish to thank two referees and an Associate Editor for many constructive comments and suggestions that significantly improved an earlier draft of this paper.

References

noises and applications. *SIAM Rev.* **10** 422-437.

Biometrika **84** 395-405.

[32] Nordman, D. J. (2002). Frequency domain empirical likelihood for short- and long-
University, Ames, IA.

tional. *Biometrika* **75** 237-249.

[37] Paparoditis, E. (2000). Spectral density based goodness-of-fit tests for time series mod-

Ann. Statist. **22** 300-325.

423-434.