The Gamma Distribution

- \(X \sim \text{Gamma}(\alpha, \beta) \)
- \(f(x) = \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} \) for \(x > 0 \).
- \(E(X) = \frac{\alpha}{\beta} \)
- \(\text{Var}(X) = \frac{\alpha}{\beta^2} \)

A Model for the Data from a Two-Treatment Experiment

- Assume there are \(J \) genes indexed by \(j = 1, 2, ..., J \).
- Data for gene \(j \) is \(x_j = (x_{j1}, x_{j2}, ..., x_{jI}) \) where \(x_{ji} \) is the normalized measure of expression on the original scale for the \(j \)th gene and \(i \)th experimental unit.
- Let \(s_1 \) denote the subset of the indices \(\{1, ..., I\} \) corresponding to treatment 1.
- Let \(s_2 \) denote the subset of the indices \(\{1, ..., I\} \) corresponding to treatment 2.

The Model (continued)

- If gene \(j \) is differentially expressed, then

\[
\{x_{ji} : i \in s_1\} \sim \text{Gamma}(\alpha, \lambda_j) \text{ with mean } \frac{\alpha}{\lambda_j} ,
\]

where \(\lambda_j \sim \text{Gamma}(\alpha_0, \nu) \), and

\[
\{x_{ji} : i \in s_2\} \sim \text{Gamma}(\alpha, \lambda_{j2}) \text{ with mean } \frac{\alpha}{\lambda_{j2}} ,
\]

where \(\lambda_{j2} \sim \text{Gamma}(\alpha_0, \nu) \).

- All random variables are assumed to be independent.

- \(p, \alpha, \alpha_0, \) and \(\nu \) are unknown parameters to be estimated from the data.
An example of how the model is imagined to generate the data for the jth gene.

• Suppose \(p = 0.05, \alpha = 12, \alpha_0 = 0.9, \) and \(\nu = 36. \)
• Generate a Bernoulli random variable with success probability 0.05. If the result is a success the gene is DE, otherwise the gene is EE.
• If EE, generate \(\lambda_j \) from Gamma(\(\alpha_0 = 0.9, \nu = 36 \))
• Then generate i.i.d. expression values from Gamma(\(\alpha = 12, \lambda_j \)).

Example Continued

• If the gene is DE, generate \(\lambda_{j1} \) and \(\lambda_{j2} \) independently from Gamma(\(\alpha_0 = 0.9, \nu = 36 \)).
• Then generate treatment 1 expression values i.i.d. from Gamma(\(\alpha = 12, \lambda_{j1} \)), and
• generate treatment 2 expression values i.i.d. from Gamma(\(\alpha = 12, \lambda_{j2} \)).

Coefficient of Variation is Constant across Gene-Treatment Combinations

• Coefficient of Variation \(CV = \text{sd} / \text{mean} \)
• Conditional on the mean for a gene-treatment combination, say \(\alpha / \lambda_{jk} \), the CV for the expression data is the CV of Gamma(\(\alpha, \lambda_{jk} \)).
• CV of Gamma(\(\alpha, \lambda_{jk} \)) is \(\frac{\alpha^{1/2}}{\alpha / \lambda_{jk}} = \frac{1}{\alpha^{1/2}}. \)
• Note that \(\alpha \) is assumed to be the same for all gene-treatment combinations.
Marginal Density for Gene j

\[f(x_j) = p \cdot f_{DE}(x_j) + (1-p) \cdot f_{EE}(x_j) \]

Marginal Likelihood for the Observed Data

\[f(x_1) \cdot f(x_2) \cdots f(x_J) \]

Use the EM algorithm to find values of \(p, \alpha, \alpha_0, \) and \(v \) that make the log likelihood as large as possible.

The posterior probability of differential expression for gene j is obtained by replacing \(p, \alpha, \alpha_0, \) and \(v \) in

\[\frac{p \cdot f_{DE}(x_j)}{p \cdot f_{DE}(x_j) + (1-p) \cdot f_{EE}(x_j)} \]

with their maximum likelihood estimates.

Software for EBArrays is available at http://www.biostat.wisc.edu/~kendzior.

Extension to Multiple Treatment Groups

• If there are 3 treatment groups, each gene can be classified into 5 categories rather than just the two categories EE and DE:
 a) 1=2=3
 b) 1=2\neq3
 c) 1\neq2=3
 d) 1=3\neq2
 e) 1\neq2, 2\neq3, 1\neq3.

• Extensions to more than 3 groups can be handled similarly.