Multiple Testing ### http://xkcd.com/882/ WE FOUND NO LINK BETWEEN PURPLE JELLY Copyright © 20 BEENIS AND HOUST WE FOUND NO LINK BETWEEN BROWN JELLY IOWA BEENNEW BUNK PERIFEN WE FOUND NO LINK BETWEEN PINK JELLY BEANS AND ACNE WE FOUND NO LINK BETWEEN BLUE JELLY BEANS AND ACNE WE FOUND NO LINK BETWEEN TEAL JELLY BEANSONNEOUSE 61 | WE FOUND NO
LINK BETWEEN
PURPLE TELLY
BEAMS AND AGNE
(P > 0.05). | WE FOUND NO
LINK BETWEEN
BROWN TELLY
BEANS AND AGNE
(P > 0.05). | WE ROUND NO LINK BETWEEN PINK JELLY BEARS AND ACHE (P>0.05). | WE FOUND NO LINK GETWEEN BULE TIELY BEANS AND ACHE (P>0.05). | WE FOUND NO
LINK GETWEEN
TEAL JELY
BEANS AND ACNE
(P > 0.05). | |--|---|--|---|---| | WE POUND NO | WE POUND NO | WE ROUND NO | WE POUND NO | WE POUND NO | | LINK BETWEEN | LINK GETVEEN | LINK BETIJEN | LINK BETVEEN | LINK BETWEEN | | SALPON JELLY | RED JELLY | TURDJOISE JELLY | HIGHEATH JELLY | YELLOV JELLY | | BEAMS AND ANIE | BEANS AND ANNE | BEANS AND ANIE | BEANS AND ROVE | BEANS AND ANE | | (P > 0.05). | | WE FOUND NO
LINK BENVEN
GREY BEAMS AND ADME
(P > 0.05). | WE FOUND NO
LINK GETWEEN
TAN FIELY
BEANS AND ACNE
(P > 0.05). | WE FOUND NO
LINK BETWEEN
CYAN TELLY
BEANS AND ACNE
(P > 0.05). | WE FOUND A
LINK BETWEEN
GREEN TELLY
BEANS AND ACNE
(P < 0.05) | WE FOUND NO
LINK BETWEEN
MAUVE JELLY
BEANS AND AONE
(P > 0.05). | | WE FOUND NO | | LINK BETWEEN | | BEIGE TELLY | LIFAC TELLY | BLACK TELLY | PACH JELLY | ORANGE JELLY | | BEAKS AND AONE | BEANS AND ACNE | BEAKS AND ACNE | BEANS AND ACNE | BEANS AND ACME | | (P > 0.05). | ### Familywise Error Rate (FWER) The simultaneous interval estimation methods we learned about correspond to simultaneous testing procedures that control the familywise error rate (FWER). The familywise error rate (FWER) is the probability of one or more Type I errors when conducting a family of tests. For example, suppose $$y = X\beta + \varepsilon$$, $\varepsilon \sim N(0, \sigma^2 I)$, and we wish to test $$H_{0j}: \boldsymbol{c}_{j}'\boldsymbol{\beta} = 0$$ for $j = 1, \dots, m$, where each H_{0i} is a testable null hypothesis. If for each j = 1, ..., m, we reject $H_{0j} \iff 0 \notin I_j$ where $$I_j = \left[\boldsymbol{c}_j' \hat{\boldsymbol{\beta}} - t_{n-r,\frac{\alpha}{2m}} \sqrt{\hat{\sigma}^2 \boldsymbol{c}_j' (\boldsymbol{X}' \boldsymbol{X})^- \boldsymbol{c}_j}, \boldsymbol{c}_j' \hat{\boldsymbol{\beta}} + t_{n-r,\frac{\alpha}{2m}} \sqrt{\hat{\sigma}^2 \boldsymbol{c}_j' (\boldsymbol{X}' \boldsymbol{X})^- \boldsymbol{c}_j} \right],$$ then the FWER will be bounded above by α . Prove that this is true. Let J_0 denote the set of indices corresponding to true null hypotheses; i.e., $$H_{0j}: c_i'\beta = 0$$ is true $\iff j \in J_0$. Then $$\begin{split} \text{FWER} &= \mathbb{P}\left(\bigcup_{j \in J_0} \{H_{0j} \text{ is rejected}\}\right) \\ &= \mathbb{P}\left(\bigcup_{j \in J_0} \{0 \notin I_j\}\right) = \mathbb{P}\left(\bigcup_{j \in J_0} \{c_j'\beta \notin I_j\}\right) \\ &\leq \mathbb{P}\left(\bigcup_{j=1}^m \{c_j'\beta \notin I_j\}\right) = 1 - \mathbb{P}\left(\bigcap_{j=1}^m \{c_j'\beta \in I_j\}\right) \\ &\leq 1 - (1 - \alpha) = \alpha. \end{split}$$ ___ #### As another example, suppose $$y_{ij} = \mu_i + \varepsilon_{ij}, \quad i = 1, \ldots, t; j = 1, \ldots, n,$$ where $\varepsilon_{11}, \varepsilon_{12}, \dots, \varepsilon_{tn} \overset{i.i.d.}{\sim} N(0, \sigma^2)$. #### Consider testing the family of null hypotheses $$H_0^{(i,i^*)}: \mu_i = \mu_{i^*}, \quad 1 \le i < i^* \le t.$$ Suppose for each $i < i^*$ pair, we reject $H_0^{(i,i^*)}$ iff $$0 \notin \left[\bar{y}_{i\cdot} - \bar{y}_{i^*\cdot} - \frac{\hat{\sigma}}{\sqrt{n}} R_{t,t(n-1),\alpha}, \bar{y}_{i\cdot} - \bar{y}_{i^*\cdot} + \frac{\hat{\sigma}}{\sqrt{n}} R_{t,t(n-1),\alpha} \right].$$ Then FWER = α . ## Strong Control of FWER The methods we learned about (Bonferroni, Scheffé, Tukey) correspond to multiple testing procedures that provide strong control of the FWER. A method for testing a family of null hypotheses H_{01},\ldots,H_{0m} provides strong control of FWER at level α iff FWER $\leq \alpha$ regardless of which or how many nulls in the family are true. ### Weak Control of FWER In contrast, a method provides <u>weak control</u> of FWER at level α if FWER $\leq \alpha$ whenever all null hypotheses in the family (H_{01}, \ldots, H_{0m}) are true. Strong control of FWER ⇒ weak control of FWER. Show by example that weak control *⇒* strong control. #### Suppose $$y_{ij} = \mu_i + \varepsilon_{ij}, \quad i = 1, 2, 3; j = 1, \dots, n,$$ where $\varepsilon_{11}, \ldots, \varepsilon_{3n} \overset{i.i.d.}{\sim} N(0, \sigma^2)$. For i = 1, 2, 3, consider testing $$H_{0i}: \mu_i = 0.$$ Consider the following multiple testing procedure. Reject H_{01} , H_{02} , and H_{03} iff $$\left|\frac{\bar{y}_{1}}{\sqrt{\hat{\sigma}^2/n}}\right| \geq t_{3(n-1),\alpha/2}.$$ lf $$\left| \frac{\bar{y}_{1}}{\sqrt{\hat{\sigma}^2/n}} \right| < t_{3(n-1),\alpha/2}$$ reject nothing. When H_{01} , H_{02} , and H_{03} are all true, FWER = $$\mathbb{P}(\bigcup_{i=1}^{3} \{H_{0i} \text{ rejected }\})$$ = $\mathbb{P}\left(\left|\frac{\bar{y}_{1.}}{\sqrt{\hat{\sigma}^2/n}}\right| \ge t_{3(n-1),\alpha/2}\right)$ = α . Thus, FWER is weakly controlled at level α . Suppose H_{01} is false and H_{02} and H_{03} are true. FWER = $$\mathbb{P}(\bigcup_{i=2}^{3} \{H_{0i} \text{ rejected}\})$$ = $\mathbb{P}\left(\left|\frac{\bar{y}_{1\cdot}}{\sqrt{\hat{\sigma}^2/n}}\right| \ge t_{3(n-1),\alpha/2}\right)$ > α . - Many multiple testing procedures that provide only weak control of the FWER have been published in the statistical literature. - Methods that provide weak control of the FWER tend to be more powerful than methods that provide strong control, but weak control is rarely sufficient. - Thus, methods that provide strong control of FWER are preferred.