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Clustering

• Group objects that are similar to one another 
together in a cluster.

• Separate objects that are dissimilar from each 
other into different clusters.

• The similarity or dissimilarity of two objects is 
determined by comparing the objects with 
respect to one or more attributes that can be 
measured for each object.
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Data for Clustering

attribute
object   1    2    3  ... m

1 4.7  3.8  5.9 ... 1.3
2 5.2  6.9  3.8 ... 2.9
3 5.8  4.2  3.9 ... 4.4
. .    .    .  .    .
. .    .    .   .   .
. .    .    .    .  .
n 6.3  1.6  4.7 ... 2.0
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Microarray Data for Clustering

attribute
object   1    2    3  ... m

1 4.7  3.8  5.9 ... 1.3
2 5.2  6.9  3.8 ... 2.9
3 5.8  4.2  3.9 ... 4.4
. .    .    .  .    .
. .    .    .   .   .
. .    .    .    .  .
n 6.3  1.6  4.7 ... 2.0

ge
ne

s
time points

estimated expression levels
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Microarray Data for Clustering

attribute
object   1    2    3  ... m

1 4.7  3.8  5.9 ... 1.3
2 5.2  6.9  3.8 ... 2.9
3 5.8  4.2  3.9 ... 4.4
. .    .    .  .    .
. .    .    .   .   .
. .    .    .    .  .
n 6.3  1.6  4.7 ... 2.0

ge
ne

s

tissue types

estimated expression levels
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Microarray Data for Clustering

attribute
object   1    2    3  ... m

1 4.7  3.8  5.9 ... 1.3
2 5.2  6.9  3.8 ... 2.9
3 5.8  4.2  3.9 ... 4.4
. .    .    .  .    .
. .    .    .   .   .
. .    .    .    .  .
n 6.3  1.6  4.7 ... 2.0

ge
ne

s

treatment
conditions

estimated expression levels
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Microarray Data for Clustering

attribute
object   1    2    3  ... m

1 4.7  3.8  5.9 ... 1.3
2 5.2  6.9  3.8 ... 2.9
3 5.8  4.2  3.9 ... 4.4
. .    .    .  .    .
. .    .    .   .   .
. .    .    .    .  .
n 6.3  1.6  4.7 ... 2.0 

sa
m

pl
es

genes

estimated expression levels
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Clustering: An Example Experiment

• Researchers were interested in studying gene 
expression patterns in developing soybean 
seeds.

• Seeds were harvested from soybean plants at 
25, 30, 40, 45, and 50 days after flowering (daf).

• One RNA sample was obtained for each level of 
daf.
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An Example Experiment (continued)

• Each of the 5 samples was measured on two 
two-color cDNA microarray slides using a loop 
design.

• The entire process we repeated on a second 
occasion to obtain a total of two independent 
biological replications.
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25 30 40 45 50

25 30 40 45 50

Rep 1

Rep 2

Diagram Illustrating the Experimental Design
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The daf means estimated for each gene from a 
mixed linear model analysis provide a useful 

summary of the data for cluster analysis.

Normalized Data for One Example Gene

daf daf

N
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m
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og
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na
l

Estimated Means + or – 1 SE
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400 genes exhibited significant evidence of differential 
expression across time (p-value<0.01, FDR=3.2%).  We 

will focus on clustering their estimated mean profiles.

Normalized Data for One Example Gene

daf daf
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We build clusters based on the most significant 
genes rather than on all genes because...

• Much of the variation in expression is noise 
rather than biological signal, and we would 
rather not build clusters on the basis of noise.

• Some clustering algorithms will become 
computationally expensive if there are a large 
number of objects (gene expression profiles in 
this case) to cluster.
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Estimated Mean Profiles for Top 36 Genes
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Dissimilarity Measures

• When clustering objects, we try to put similar
objects in the same cluster and dissimilar
objects in different clusters.

• We must define what we mean by dissimilar.

• There are many choices.

• Let x and y denote m dimensional objects:

x=(x1, x2, ..., xm)       y=(y1,y2, ..., ym)

e.g., estimated means at m=5 five time points 
for a given gene.
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Parallel Coordinate Plots

Scatterplot

x1

x2

Parallel Coordinate Plot

Coordinate

Va
lu

e
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These are parallel coordinate plots that each show 
one point in 5-dimensional space.
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Euclidean Distance
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Euclidean Distance

Scatterplot

x1

x2
dE(red,green)

dE(black,red)

dE(black,green)
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1-Correlation Dissimilarity

Parallel Coordinate Plot

Coordinate

Va
lu

e

The black and green objects
are close together and far
from the red object.
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Relationship between Euclidean Distance
and 1-Correlation Dissimilarity
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Thus Euclidean distance for standardized objects 
is proportional to the square root of the

1-correlation dissimilarity.

• We will standardize our mean profiles so that 
each profile has mean 0 and standard deviation 
1 (i.e., we will convert each x to x).

• We will cluster based on the Euclidean distance 
between standardized profiles.

• Original mean profiles with similar patterns are 
“close” to one another using this approach.

~
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Clustering methods are often divided
into two main groups.

1. Partitioning methods that attempt to optimally 
separate n objects into K clusters.

2. Hierarchical methods that produce a nested 
sequence of clusters.

24

Some Partitioning Methods

1. K-Means

2. K-Medoids

3. Self-Organizing Maps (SOM)

(Kohonen, 1990; Tomayo, P. et al., 1998)
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K Medoids Clustering

0. Choose K of the n objects to represent K cluster 
centers (a.k.a., medoids).

1. Given a current set of K medoids, assign each object to 
the nearest medoid to produce an assignment of 
objects to K clusters.

2. For a given assignment of objects to K clusters, find the 
new medoid for each cluster by finding the object in the 
cluster that is the closest on average to all other objects 
in its cluster.

3. Repeat steps 1 and 2 until the cluster assignments do 
not change.
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Example of K Medoids Clustering
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Start with K Medoids

28

Assign Each Point to Closest Medoid

29

Assign Each Point to Closest Medoid

30

Assign Each Point to Closest Medoid
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Assign Each Point to Closest Medoid

32

Find New Medoid for Each Cluster

New medoids have smallest average
distance to other points in their cluster.

33

Reassign Each Point to Closest Medoid

34

Reassign Each Point to Closest Medoid

35

Find New Medoid for Each Cluster

36

Reassign Each Point to Closest Medoid

No reassignment is needed,
so the procedure stops.
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Public Cluster 1 of 3

DAF
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Cluster 1 of 3 from K-Medoids Algorithm Applied to the
Top 400 Genes from the Two-Color Array Data
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Public Cluster 2 of 3
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Cluster 2 of 3 from K-Medoids Algorithm Applied to the
Top 400 Genes from the Two-Color Array Data
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Public Cluster 3 of 3

DAF
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Cluster 3 of 3 from K-Medoids Algorithm Applied to the
Top 400 Genes from the Two-Color Array Data
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Choosing the Number of Clusters K

• Choose K that maximizes the average silhouette 
width.
Rousseeuw, P.J. (1987). Journal of Computational and Applied 
Mathematics, 20, 53-65.

Kaufman, L. and Rousseeuw, P.J. (1990).  Finding Groups in Data: An 
Introduction to Cluster Analysis. Wiley, New York.

• Choose K according to the gap statistic.
Tibshirani, R., Walther, G., Hastie, T. (2001).  Journal of the Royal Statistics 
Society, Series B-Statistical Methodology, 63, 411-423.
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Silhouette Width

• The silhouette width of an object is             

(B-W)/max(B,W)

where W=average distance of the object to all 
other objects within its cluster and B=average 
distance of the object to all objects in its nearest 
neighboring cluster.

• The silhouette width will be between -1 and 1.

42

Silhouette Width = (B-W)/max(B,W)

• Values near 1 indicate that an object is near the 
center of a tight cluster.

• Values near 0 indicate that an object is between 
clusters.

• Negative values indicate that an object may be 
in the wrong cluster.
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Silhouette Width = (B-W)/max(B,W)

• The silhouette widths of clustered objects can be 
averaged.

• A clustering with a high average silhouette width 
is preferred.

• For a given method of clustering, we may wish 
to choose the value of K that maximizes the 
average silhouette width.
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For a Given K Compute
Silhouette Width for Each Point

Find W=average distance from
point to all others within its
cluster.

Find B=average distance from
point to all others in its nearest
neighboring cluster.

Silhouette width is    B-W
max(B,W)

45

Choice of K

Silhouette width is computed
for all points and averaged.

K with largest average silhouette
width is preferred.

K=3: Average Silhouette Width=0.640

K=2: Average Silhouette Width=0.646

Slight preference for
K=2 in this case.

46

Average Silhouette Width vs. K for the K-Medoids Algorithm
Applied to the Top 400 Genes from the Two-Color Array Data
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Cluster 1 of 2 from K-Medoids Algorithm Applied to the
Top 400 Genes from the Two-Color Array Data
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Cluster 2 of 2 from K-Medoids Algorithm Applied to the
Top 400 Genes from the Two-Color Array Data
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Gap Statistic

• For a given clustering of n objects x1,...,xn;
the distance d(xi,xj) between objects xi and xj is 
called a within-cluster distance if xi and xj are 
within the same cluster.

• Let Dr = the sum of all within-cluster distances in 
the rth cluster, and let nr denote the number of 
objects in the rth cluster.

• For a given clustering of n objects into k clusters, 
let Wk = Σr=1 Dr / nr.

k

50

Gap Statistic (continued)

• For a given clustering method, compute          
log W1, log W2,..., log WK.

• Let minj denote the minimum of the jth
component of all n objects clustered.

• Let maxj denote the maximum of the jth
component of all n objects to be clustered.

• Generate n random objects uniformly distributed 
on the m dimensional rectangle

[min1,max1] x     x [minm,maxm]. ...
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Gap Statistic (continued)

• Using the random uniform data, compute         
log W1, log W2,..., log WK.

• Randomly generate new uniform data multiple 
times (20 or more) and use the results to obtain 
log W1, log W2,..., log WK and S1, S2,...,SK; the 
averages and standard deviations of the 
simulated log W values.

• Let G(k) = log Wk – log Wk.

***

***

*
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Estimate of Best K Using the Gap Statistic

• An approximate standard error for G(k) is

Sk 1+1/N

where N denotes the number of randomly 
generated data sets.

• An estimate of the best K is given by

K = min { k : G(k) ≥ G(k+1) – Sk+1 1+1/N }.^

53

Simple Example Data Revisited

54

Gap Analysis for the Simple Example (N=1000)

k=Number of Clusters k=Number of Clusters

lo
g 

W
k

G
(k

)

G(k)=log Wk – log Wk vs. k
(+ or – 1 standard error)log Wk and log Wk vs. k   * *
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The Gap Statistic Suggests K=3 Clusters

G(1) less than G(2)-SE
G(2) less than G(3)-SE

G(3) >= G(4)-SE
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The Gap Statistic Suggests K=3 Clusters
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Gap Analysis for Two-Color Array Data (N=100)

k=Number of Clusters k=Number of Clusters

lo
g 

W
k

G
(k

)

G(k)=log Wk – log Wk vs. k
(+ or – 1 standard error)log Wk and log Wk vs. k   * *
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Gap Analysis for Two-Color Array Data (N=100)

k=Number of Clusters

G
(k

)

Gap Analysis
Estimates K=11

Clusters

“zoomed in” version
of previous plot

59 60
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Plot of Cluster Medoids
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Principal Components

• Principal components can be useful for providing 
low-dimensional views of high-dimensional data.

1 2 ... m

1
2

X =             .
.
.
n

Data
Matrix

or
Data
Set

x11 x12 . . . x1m

x21

.

.

.

xn1

x2m

.

.

.

xnmxn2 . . .

observation
or

object

variable
or

attribute

number of variables

number of observations
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Principal Components (continued)

• Each principal component of a data set is a 
variable obtained by taking a linear combination 
of the original variables in the data set.

• A linear combination of m variables x1, x2, ..., xm
is given by  c1x1 + c2x2 +      + cmxm.

• For the purpose of constructing principal 
components, the vector of coefficients is 
restricted to have unit length, i.e.,                      
c1 + c2 +    + cm = 1.

...

...2 2 2
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Principal Components (continued)

• The first principal component is the linear 
combination of the variables that has maximum 
variation across the observations in the data set.

• The jth principal component is the linear 
combination of the variables that has maximum 
variation across the observations in the data set 
subject to the constraint that the vector of 
coefficients be orthogonal to coefficient vectors 
for principal components 1, ..., j-1.
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The Simple Data Example

x1

x 2
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The First Principal Component Axis

x1

x 2
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The First Principal Components

x1

x 2

1st PC for
this point
is signed
distance

between its
projection
onto the

1st PC axis
and the
origin.
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The Second Principal Component Axis

x1

x 2

78

The Second Principal Component

x1

x 2

2nd PC for
this point
is signed
distance

between its
projection
onto the

2nd PC axis
and the
origin.
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Plot of PC1 vs. PC2

PC1

P
C

2

80

Compare the PC plot to the plot
of the original data below. 

x1

x 2

Because there
are only two
variables here,
the plot of
PC2 vs. PC1 is
just a rotation
of the original
plot.
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There is more to be gained when the number of 
variables is greater than 2.

• Consider the principal components for the 400 
significant genes from our two-color microarray 
experiment.

• Our data matrix has n=400 rows and m=5 
columns.

• We have looked at this data using parallel 
coordinate plots.

• What would it look like if we projected the data 
points to 2-dimensions?
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Projection of Two-Color Array Data
with 11-Medoid Clustering

PC1   

P
C

2

a=1
b=2
c=3
d=4
e=5
f=6
g=7
h=8
i=9
j=10
k=11

83

Projection of Two-Color Array Data
with 11-Medoid Clustering

PC1   

P
C

3

a=1
b=2
c=3
d=4
e=5
f=6
g=7
h=8
i=9
j=10
k=11

84

P
C

2
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Projection of Two-Color Array Data
with 11-Medoid Clustering

PC1   

P
C

3

a=1
b=2
c=3
d=4
e=5
f=6
g=7
h=8
i=9
j=10
k=11
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Hierarchical Clustering Methods

• Hierarchical clustering methods build a nested 
sequence of clusters that can be displayed using 
a dendrogram.

• We will begin with some simple illustrations and 
then move on to a more general discussion.
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The Simple Example Data
with Observation Numbers

x1

x 2

88

Dendrogram for the Simple Example Data

Tree Structure

nodes

a parent node

terminal nodes
or leaves

corresponding
to objects

root node

daughter nodes

(daughter nodes
with same parent
are sister nodes)

89

A Hierarchical Clustering of the
Simple Example Data

Scatterplot of Data Dendrogram

x1

x2

clusters within clusters
within clusters... 90

Dendrogram for the Simple Example Data

The height
of a node
represents the
dissimilarity
between the
two clusters
merged
together at
the node.

These two clusters have a dissimilarity of about 1.75.
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The appearance of a dendrogram is not unique.

Any two
sister nodes
could trade
places without
changing the
meaning of the
dendrogram.

Thus 14 next to 7 does not imply that these objects are similar. 92

Dendrogram for the Simple Example Data

By convention,
R dendrograms
show the lower
sister node
on the left.

Ties are broken
by observation
number.

The appearance of a dendrogram is not unique.

e.g., 13 is to the left of 14 

93

The lengths
of the branches
leading to
terminal nodes
have no
particular
meaning in R
dendrograms.

The appearance of a dendrogram is not unique.
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Cutting the tree at a given height will correspond to 
a partitioning of the data into k clusters.

k=2 Clusters

95

Cutting the tree at a given height will correspond to 
a partitioning of the data into k clusters.

k=3 Clusters

96

Cutting the tree at a given height will correspond to 
a partitioning of the data into k clusters.

k=4 Clusters
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Cutting the tree at a given height will correspond to 
a partitioning of the data into k clusters.

k=10 Clusters
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Agglomerative (Bottom-Up) Hierarchical Clustering

• Define a measure of distance between any two 
clusters.  (An individual object is considered a 
cluster of size one.)

• Find the two nearest clusters and merge them 
together to form a new cluster.

• Repeat until all objects have been merged into a 
single cluster.

99

Common Measures of Between-Cluster Distance

• Single Linkage a.k.a. Nearest Neighbor:          
the distance between any two clusters A and B 
is the minimum of all distances from an object in 
cluster A to an object in cluster B.

• Complete Linkage a.k.a Farthest Neighbor:        
the distance between any two clusters A and B 
is the maximum of all distances from an object in 
cluster A to an object in cluster B.

100

Common Measures of Between-Cluster Distance

• Average Linkage:                                                
the distance between any two clusters A and B 
is the average of all distances from an object in 
cluster A to an object in cluster B.

• Centroid Linkage:                                                
the distance between any two clusters A and B 
is the distance between the centroids of cluster 
A and B.  (The centroid of a cluster is the 
componentwise average of the objects in a 
cluster.)  

101

Agglomerative Clustering Using Average Linkage 
for the Simple Example Data Set

Scatterplot of Data Dendrogram

x1

x2
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Agglomerative Clustering Using Average Linkage 
for the Simple Example Data Set

A.  1-2 

A

B.  9-10 

B

C.  3-4 

C

D.  5-6 

D

E.  7-(5,6) 

E

F.  13-14 

F

G.  11-12 
G H.  (1,2)-(3,4) H

I.  (9,10)-(11,12) 

I

etc....

J KL M
N

O

P
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Agglomerative Clustering Using Single Linkage for 
the Simple Example Data Set

104

Agglomerative Clustering Using Complete Linkage 
for the Simple Example Data Set

105

Agglomerative Clustering Using Centroid Linkage 
for the Simple Example Data Set

Centroid linkage is
not monotone in
the sense that
later cluster merges
can involve clusters
that are more similar
to each other than
earlier merges.

106

Agglomerative Clustering Using Centroid Linkage 
for the Simple Example Data Set

The merge between
4 and (1,2,3,5) creates
a cluster whose centroid
is closer to the (6,7)
centroid than 4 was to
the centroid of (1,2,3,5).
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Agglomerative Clustering Using Single Linkage for 
the Two-Color Microarray Data Set

108

Agglomerative Clustering Using Complete Linkage 
for the Two-Color Microarray Data Set
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Agglomerative Clustering Using Average Linkage 
for the Two-Color Microarray Data Set

110

Agglomerative Clustering Using Centroid Linkage 
for the Two-Color Microarray Data Set

111

Which Between-Cluster Distance is Best?

• Depends, of course, on what is meant by “best”.

• Single linkage tends to produce “long stringy” clusters.

• Complete linkage produces compact spherical clusters 
but might result in some objects that are closer to objects 
in clusters other than their own. (See next example.)

• Average linkage is a compromise between single and 
complete linkage.

• Centroid linkage is not monotone. 
112

1. Conduct agglomerative hierarchical clustering for these
data using Euclidean distance and complete linkage.

2. Display your results using a dendrogram.

3.  Identify the k=2 clustering using your results.

113

Results of Complete-Linkage Clustering

Results for k=2 Clusters

114

Divisive (Top-Down) Hierarchical Clustering

• Start with all data in one cluster and divide it into 
two clusters (using, e.g., 2-means or 2-medoids 
clustering).

• At each subsequent step, choose one of the 
existing clusters and divide it into two clusters. 

• Repeat until there are n clusters each containing 
a single object.
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Potential Problem with Divisive Clustering

15

116

Macnaughton-Smith et al. (1965)

1. Start with objects in one cluster A.

2. Find the object with the largest average dissimilarity to 
all other objects in A and move that object to a new 
cluster B.

3. Find the object in cluster A whose average dissimilarity 
to other objects in cluster A minus its average 
dissimilarity to objects in cluster B is maximum.  If this 
difference is positive, move the object to cluster B.

4. Repeat step 3 until no objects satisfying 3 are found.

5. Repeat steps 1 through 4 to one of the existing clusters 
(e.g., the one with the largest average within-cluster 
dissimilarity) until n clusters of 1 object each are 
obtained. 

117

Macnaughton-Smith Divisive Clustering

15

A B

118

Macnaughton-Smith Divisive Clustering

15

A B
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Macnaughton-Smith Divisive Clustering

15

A B

120

Macnaughton-Smith Divisive Clustering

15

A’ BB’
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Macnaughton-Smith Divisive Clustering

15

A’ BB’

Next continue to split each of these clusters
until each object is in a cluster by itself.

122

Dendrogram for the Macnaughton-Smith Approach

123

Agglomerative vs. Divisive Clustering

• Divisive clustering has not been studied as 
extensively as agglomerative clustering.

• Divisive clustering may be preferred if only a 
small number of large clusters is desired.

• Agglomerative clustering may be preferred if a 
large number of small clusters is desired.


