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Preprocessing Steps

• Background correction

• Transformation

• Normalization

• Summarization
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What is background correction?

• Background correction involves an attempt to remove 
any portion of a raw fluorescence intensity measurement 
that is not attributable to fluorescence from target nucleic 
acid molecules hybridized to their complementary probe.

• Example sources of fluorescence other than hybridized 
target nucleic acid molecules include fluorescence in the 
microarray slide itself, fluorescence from neighboring 
probe spots, or fluorescence from unbound labeled 
nucleic acid sequences or other stray particles not 
washed from the slide.
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What is transformation?

• Transformation refers to transforming the gene 
expression measures (usually after background 
correction).

• The most commonly used transformation is the log 
transformation.

• The base is irrelevant, but log base 2 is popular for 
microarray data.

• More complex transformations have been proposed that 
are linear for low values and logarithmic for high values.
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What is Normalization?

• Normalization describes the process of removing (or 
minimizing) non-biological variation in measured signal 
intensity levels so that biological differences in gene 
expression can be appropriately detected.

• Normalization does not necessarily have anything to do 
with the normal distribution that plays a prominent role in 
statistics.

6

Sources of Non-Biological Variation

• Variation across replicate microarray slides resulting 
from the manufacturing process

• Variation in the preparation of target samples

• Differences in the number of dyed target molecules 
hybridized for each target sample

• Dye variation: differences in heat and light sensitivity of 
dyes and differences in the efficiency of dye 
incorporation
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Sources of Non-Biological Variation 
(continued)

• Variation across various steps in the measurement 
process, such as hybridization, washing, and microarray 
image acquisition

• Variation in laboratory conditions from day to day

• Variation among technicians doing the lab work

• etc.
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What is summarization?

• If a gene is represented by multiple probes on a 
microarray, it may be desirable to combine the 
measures from multiple probes to obtain a single 
measure of the gene's expression level.

• Simply computing the mean or median is often 
reasonable.

• We will discuss more complex strategies in the 
context of Affymetrix GeneChip data.
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Background Correction
• Recall that Spot signal or simply signal is fluorescence 

intensity due to target molecules hybridized to probe 
sequences contained in a spot (what we would like to 
measure) plus background fluorescence (what we would 
rather not measure).

• Background is fluorescence that may contribute to spot 
pixel intensities but is not due to fluorescence from target 
molecules hybridized to spot probe sequences.

• The idea is to remove background fluorescence from the 
spot signal fluorescence because the spot signal is 
believed to be a sum of fluorescence due to background 
and fluorescence due to hybridized target molecules.
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A Simple Background Correction Method

Subtract local background from the signal, e.g.,

signal mean – background mean
or

signal mean – background median
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Drawbacks of the Simple Method

• Signal minus background may be more variable 
than the signal itself.

• Subtracting the background may produce a 
negative value that cannot be logarithmically 
transformed.
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The Normal-Exponential Convolution Method

• Silver, J. D., Ritchie, M. E., Smyth, G. K. 
(2009). Microarray background correction: 
maximum likelihood estimation for the normal 
– exponential convolution. Biostatistics 2, 352–
363.

• The authors build upon an idea originally 
proposed for Affymetrix data by Irizarray et al. 
(2003) Biostatistics 4, 249-264.
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The Normal-Exponential Convolution Method

• Silver, J. D., Ritchie, M. E., Smyth, G. K. 
(2009). Microarray background correction: 
maximum likelihood estimation for the normal 
– exponential convolution. Biostatistics 2, 352–
363.

• The authors build upon an idea originally 
proposed for Affymetrix data by Irizarray et al. 
(2003) Biostatistics 4, 249-264.
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The Normal-Exponential Convolution Method

• Suppose there are n spots on a slide.

• For spot i=1,...n on any particular slide and for either 
dye, let Di = spot signali – spot backgroundi.

• Suppose Di = Xi + Yi, where

X1,...,Xn iid Exponential(λ)

independent of

Y1,...,Yn iid N(μ,σ2).
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The Normal-Exponential Convolution Method

• Xi represents the true signal.

• Yi represents error and background that is present after 
subtraction of local background. 

• It can be shown that E( Xi | Di ) is 

Di – μ – λσ2 + σ2φ(0; Di – μ – λσ2, σ2 )                                       
1 - Φ(0; Di – μ – λσ2, σ2 )

where φ(  ; mean, variance) and Φ(  ; mean, variance) 
denote a normal density and cumulative density, 
respectively.
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The Normal-Exponential Convolution Method

• Using D1,...,Dn as the observed data, find 
maximum likelihood estimates of μ, σ2, and λ.

• Substitute these MLEs into E( Xi | Di ) to get a 
background corrected signal.

• This entire process is repeated separately for 
each slide and dye combination.
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Transformation of Background-Corrected Signals

• Silver, Ritchie, and Smyth (2009) recommend the 
transformation log2(BCS+50), where BCS denotes the 
background-corrected signal resulting from the normal-
exponential convolution method.

• The addition of 50 prior to the log transformation reduces 
the variance of log ratios for genes with low signal 
intensities, i.e., rather than log2(R/G) use 

log2{(R+50)/(G+50)}=log2(R+50)-log2(G+50),

where R and G are red and green BCS, respectively. 
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Normalization

• Following background correction and transformation, the 
next preprocessing step is normalization.

• Recall that the goal of normalization is to reduce the 
impact of non-biological variation in measured signal 
intensity levels so that biological differences in gene 
expression can be appropriately detected.
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Normalization

• The next several slides show normalization of data from 
an actual microarray experiment.

• Although the normalization steps depicted would 
typically be carried out with log2(BCS) or log2(BCS+50) 
data, natural log signal means prior to background 
correction were used in most cases.

• The figures would look very similar if log2(BCS) or 
log2(BCS+50) data had been used instead of log signal 
means. 
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Side-by-side boxplots show variation across channels.

Here channel
refers to a
slide / dye
combination.
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Slide 2
Cy3 Cy5Slide 1

Cy3 Cy5

median

Q3=75th percentile

Q1=25th percentile

minimum

maximum
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Interquartile range (IQR) is Q3-Q1.  Points more than 1.5*IQR above Q3
or more than 1.5*IQR below Q1 are displayed individually.

median

Q3=75th percentile

Q1=25th percentile

minimum

maximum
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One of the simplest normalization strategies is to align the
log signals so that all channels have the same median.

• The value of the common median is not important for 
subsequent analyses.

• A convenient choice is zero so that positive or negative 
values reflect signals above or below the median for a 
particular channel.

• If negative normalized signal values seem confusing, 
any positive constant may be added to all values after 
normalization to zero medians. 
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Note that medians match but variation seems to differ greatly across channels.
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Yang, et al. (2002. Nucliec Acids Research, 
30, 4 e15) recommend scale normalization.*
Consider a matrix X with i=1,...,I rows and j=1,...,J columns.

Let xij denote the entry in row i and column j.

We will apply scale normalization to the matrix of log signal mean values that 
have already been median centered (each row corresponds to a gene and 
each column corresponds to a channel).

For each column j, let mj=median(x1j, x2j, ..., xIj).

For each column j, let MADj=median(|x1j-mj|,|x2j-mj|,...,|xIj-mj|).

To scale normalize the columns of X to a constant value C, multiply all the 
entries in the jth column by C/MADj for all j=1,...,J.

A common choice for C is the geometric mean of MAD1,...,MADJ = 

The choice of C will not effect subsequent tests or p-values but will affect fold 
change calculations.

( ) J/J

j jMAD
1

1
∏

=

*Yang et al. recommended scale normalization for log R/G values.
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Data after Median Centering and Scale Normalizing

28

A Simple Example

Gene     Slide1Cy3   Slide1Cy5   Slide2Cy3   Slide2Cy5
1 8              15             9              13   
2 7                2             7              15
3 3                6             5                8
4 1                5             2                9
5 9              13             6              11
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Determine Channel Medians

Gene     Slide1Cy3   Slide1Cy5   Slide2Cy3   Slide2Cy5
1 8       15        9       13   
2 7        2        7       15
3 3        6        5        8
4 1        5        2        9
5 9       13        6       11

medians 7        6        6       11
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Subtract Channel Medians

Gene     Slide1Cy3   Slide1Cy5   Slide2Cy3   Slide2Cy5
1 1        9        3        2   
2 0       -4        1        4
3 -4        0       -1       -3
4 -6       -1       -4       -2
5 2        7        0        0

This is the data after median centering.
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Find Median Absolute Deviations

Gene     Slide1Cy3   Slide1Cy5   Slide2Cy3   Slide2Cy5
1 1        9        3        2   
2 0       -4        1        4
3 -4        0       -1       -3
4 -6       -1       -4       -2
5 2        7        0        0

MAD       2        4        1        2
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Find Scaling Constant

Gene     Slide1Cy3   Slide1Cy5   Slide2Cy3   Slide2Cy5
1 1        9        3        2   
2 0       -4        1        4
3 -4        0       -1       -3
4 -6       -1       -4       -2
5 2        7        0        0

MAD       2        4        1        2

C = (2*4*1*2)1/4 = 2 
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Find Scaling Factors

Gene     Slide1Cy3   Slide1Cy5   Slide2Cy3   Slide2Cy5
1 1        9        3        2   
2 0       -4        1        4
3 -4        0       -1       -3
4 -6       -1       -4       -2
5 2        7        0        0

Scaling   2        2        2        2
Factors   2        4        1        2
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Scale Normalize the
Median Centered Data

Gene     Slide1Cy3   Slide1Cy5   Slide2Cy3   Slide2Cy5
1 1      4.5        6        2   
2 0     -2.0        2        4
3 -4      0.0       -2       -3
4 -6     -0.5       -8       -2
5 2      3.5        0        0

This is the data after median centering and
scale normalizing.
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Log Green
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Slide 1 Log Signal Means after Median Centering and Scaling All Channels

Evidence of intensity-dependent dye bias
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M vs. A Plot of the Logged, Centered, and Scaled Slide 1 Data
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To handle intensity-dependent dye bias, Yang, et al. 
(2002. Nucliec Acids Research, 30, 4 e15) recommend 
“lowess” normalization prior to median centering and 
scale normalizing.

“lowess” stands for

LOcally WEighted polynomial regreSSion.

The original reference for lowess is

Cleveland, W. S. (1979). Robust locally weighted
regression and smoothing scatterplots.

JASA 74 829-836.
38

Log Green
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Slide 1 Log Signal Means
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M vs. A Plot for Slide 1 Log Signal Means
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M vs. A Plot for Slide 1 Log Signal Means
with lowess fit (f=0.40)
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Adjust M Values
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A =  (Adjusted Log Green + Adjusted Log Red) / 2 
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M vs. A Plot after Adjustment
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M vs. A Plot for Slide 1 Log Signal Means
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Adjusted Log Green

adjusted log red = log red – adj/2

adjusted log green=log green + adj/2

where adj = lowess fitted value                   
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A =  (Log Green + Log Red) / 2         
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M vs. A Plot for Slide 1 Log Signal Means
with lowess fit (f=0.40)

For spots with
A=7, the lowess
fitted value is
0.883.  Thus the
value of adj
discussed on the
previous slide is
0.883 for spots
with A=7.

The M value for
such spots would
be moved down
by 0.883.  The
log red value
would be
decreased by
0.883/2 and the
log green value
would be increased
by 0.883/2 to obtain
adjusted log red and
adjusted log green
values, respectively.

0.883
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After a separate lowess normalization for each
slide, the adjusted values can be median centered
and (if deemed necessary) scale normalized across
all channels using the lowess-normalized data for
each channel.
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Boxplots of Mean Signal after Logging, Lowess Normalization,
Median Centering, and Scaling
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After a separate lowess normalization for each
slide, the adjusted values can be median centered
and scale normalized across all channels using the
lowess-normalized data for each channel.

A sector represents the set of points spotted
by a single pin on a single slide.  The entire
normalization process described above can be
carried out separately for each sector on each
channel.

It may be necessary to normalize by sector/channel
combinations if spatial variability is apparent.  

48Log Green             
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Data from 3 Sectors on a Single Slide
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Bolstad, et al. (2003, Bioinformatics 19 2:185-193) propose 
quantile normalization for microarray data 

• Quantile normalization is most commonly used in 
normalization of Affymetrix data

• It can be used for two-color data as well.

• Quantile normalization can force each channel to have 
the same quantiles.

• xq (for q between 0 and 1) is the q quantile of a data set 
if the fraction of the data points less than or equal to xq is 
at least q, and the fraction of the data points greater than 
or equal to xq at least 1-q.

• median=x0.5     Q1=x0.25     Q3=x0.75
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Boxplots of Log Signal Means after Quantile Normalization
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Original Slide 1 Log Signal Means
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Comparison of Slide 1 Log Signal Means after Quantile Normalization

Log Green             

Lo
g 

R
ed

 

53

Details of Quantile Normalization

1. Find the smallest log signal on each 
channel.

2. Average the values from step 1.

3. Replace each value in step 1 with the 
average computed in step 2.

4. Repeat steps 1 through 3 for the second 
smallest values, third smallest values,..., 
largest values.
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A Simple Example

Gene     Slide1Cy3   Slide1Cy5   Slide2Cy3   Slide2Cy5
1 8       15        9       13   
2 7        2        7       15
3 3        6        5        8
4 1        5        2        9
5 9       13        6       11
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Find the Smallest Value
for Each Channel

Gene     Slide1Cy3   Slide1Cy5   Slide2Cy3   Slide2Cy5
1 8       15        9       13   
2 7        2        7       15
3 3        6        5        8
4 1        5        2        9
5 9       13        6       11
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Average These Values

(1+2+2+8)/4=3.25

Gene     Slide1Cy3   Slide1Cy5   Slide2Cy3   Slide2Cy5
1 8       15        9       13   
2 7        2        7       15
3 3        6        5        8
4 1        5        2        9
5 9       13        6       11
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Replace Each Value by the Average

(1+2+2+8)/4=3.25

Gene     Slide1Cy3   Slide1Cy5   Slide2Cy3   Slide2Cy5
1 8       15        9       13   
2 7       3.25 7       15
3 3        6        5       3.25
4 3.25 5       3.25 9
5 9       13        6       11
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Find the Next Smallest Values

Gene     Slide1Cy3   Slide1Cy5   Slide2Cy3   Slide2Cy5
1 8       15        9       13   
2 7       3.25 7       15
3 3        6        5       3.25
4 3.25 5       3.25 9
5 9       13        6       11

59

Average These Values

Gene     Slide1Cy3   Slide1Cy5   Slide2Cy3   Slide2Cy5
1 8       15        9       13   
2 7       3.25 7       15
3 3        6        5       3.25
4 3.25 5       3.25 9
5 9       13        6       11

(3+5+5+9)/4=5.5

60

Replace Each Value by the Average

Gene     Slide1Cy3   Slide1Cy5   Slide2Cy3   Slide2Cy5
1 8       15        9       13   
2 7       3.25 7       15
3 5.50 6       5.50 3.25
4 3.25 5.50 3.25 5.50
5 9       13        6       11
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Find the Average of the
Next Smallest Values

Gene     Slide1Cy3   Slide1Cy5   Slide2Cy3   Slide2Cy5
1 8       15        9       13   
2 7       3.25 7       15
3 5.50 6       5.50 3.25
4 3.25 5.50 3.25 5.50
5 9       13        6       11

(7+6+6+11)/4=7.5
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Replace Each Value by the Average

Gene     Slide1Cy3   Slide1Cy5   Slide2Cy3   Slide2Cy5
1 8       15        9       13   
2 7.50 3.25 7       15
3 5.50 7.50 5.50 3.25
4 3.25 5.50 3.25 5.50
5 9       13       7.50 7.50
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Gene     Slide1Cy3   Slide1Cy5   Slide2Cy3   Slide2Cy5
1 8       15        9       13   
2 7.50 3.25 7       15
3 5.50 7.50 5.50 3.25
4 3.25 5.50 3.25 5.50
5 9       13       7.50 7.50

(8+13+7+13)/4=10.25

Find the Average of the
Next Smallest Values
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Replace Each Value by the Average

Gene     Slide1Cy3   Slide1Cy5   Slide2Cy3   Slide2Cy5
1 10.25 15        9    10.25
2 7.50 3.25 10.25 15
3 5.50 7.50 5.50 3.25
4 3.25 5.50 3.25 5.50
5 9      10.25 7.50 7.50
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Gene     Slide1Cy3   Slide1Cy5   Slide2Cy3   Slide2Cy5
1 10.25 15        9    10.25
2 7.50 3.25 10.25 15
3 5.50 7.50 5.50 3.25
4 3.25 5.50 3.25 5.50
5 9      10.25 7.50 7.50

(9+15+9+15)/4=12.00

Find the Average of the
Next Smallest Values
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Replace Each Value by the Average

Gene     Slide1Cy3   Slide1Cy5   Slide2Cy3   Slide2Cy5
1 10.25 12.00    12.00 10.25
2 7.50 3.25 10.25 12.00
3 5.50 7.50 5.50 3.25
4 3.25 5.50 3.25 5.50
5 12.00 10.25 7.50 7.50

This is the data matrix after quantile normalization.
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Miscellaneous Comments on Preprocessing
• We have only scratched the surface in terms of 

preprocessing methods.  There are many variations on 
the techniques that we have described as well as other 
approaches that we won’t discuss.

• Preprocessing affects the final results, but it is often not 
clear what strategies are best.

• It would be good to integrate preprocessing and 
statistical analysis, but it is difficult to do so.  The most 
common approach is to preprocess data and then 
perform statistical analysis of the resulting data as a 
separate step in the microarray analysis process.


