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Repeated Measures Example

In an exercise therapy study, subjects were assigned
to one of three weightlifting programs

i=1: The number of repetitions of weightlifting was
increased as subjects became stronger (RI).

i=2: The amount of weight was increased as subjects
became stronger (WI).

I=3: Subjects did not participate in weightlifting
(XCont).
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e Measurements of strength (y) were taken on days
2,4,6, 8,10, 12 and 14 for each subject.

e Source: Littel, Freund, and Spector (1991), SAS
System for Linear Models.

e R code: RepeatedMeasures.R
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A Linear Mixed-Effect Model
Yije = P+ Qi + 8ij + T + ik + €k
Y;i strength measurement for program i, subject j,
time point &
a; fixed program effect
s;; random subject effect
7 fixed time effect

v« fixed programxtime interaction

e;x random error
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Initially, we will assume

i iLd. N(0,07) independent of e;; S N(0,07).
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Average strength after 2k days on the ith program is

Hik = E(yijk)
= E(p+ o + sij + e + v + eijx)
= p+ o+ E(s;) + 7+ i + E(eji)
= M+ Qi+ T+ Vik
fori=1,2,3andk=1,2,...,7.
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The variance of any single observation is

Var (y ijk ) =
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Val'(,u + o; + Sij + Tk + Vik T eijk)
Var(s,-j + eijk)
Var(s;;) + Var(e;i)

2 2
o, +0,.
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The covariance between an two different
observations from the same subject is

Cov(yiik, yije) = Cov(u + oy + 5 + T + Vix + ik
p+ o + s+ 10+ Yie + ee)

= COV(S,'J' - e,-jk, S,'j -+ e,-jg)

= Cov(sy, s;) + Cov(sy, e;e)
+COV(€ijk7 Sij) + COV(eijka eijé)
= Var(s;) = o7

R
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The correlation between y;; and y;; is
o
— S = p.
73+ 2

Observations taken on different subjects are
uncorrelated.
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For the set of observations taken on a single subject,

we have
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This is known as a compound symmetric covariance

structure.
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Using n; to denote the number of subjects in the ith
program, we can write this model in the form

y=XB8+Zu+te

as follows.
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In this case,

G = Var(u) = 0’1, and

R =Var(e) = 7zm)x(m);

where m = ny + n, + n3 is the total number of subjects.

3 = Var(y) = ZGZ' +R
is a block diagonal matrix with one block of the form
Js211/7><7 + J(%I7><7

for each subject.
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LSMEAN for Program i and Time &

y —lf = i+ i +S5i + T+ Y+ e
Yik = n; Yijk = 1 T & Si. Tk T Yik T €ik
j=1
2 2
+
Var(yie) = =
n;

6 1 !
se = \/<§Mserror + 7MSSUbj(PrOg)) n_l

Cochran-Satterthwaite degrees of freedom = 65.8.
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LSMEAN for Program i

7
1 _ _ L
? y,—.k:yi..:u+ozi+si.+7.+%.+e,-..
k=1
702 + o2
Var(y;.) = ———=¢
(yl ) 7ni
se — MSsubj(prog)
7l’li

Degrees of freedom = 54 because there are
ny = 16, n, = 21, n3 = 20 subjects in the three
programs.
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LSMEAN for time k&

3
1|/6 1 1
se = 5 (5 Serror + ?MSSUbj(PTOg)) (Z n_z>

Cochran-Satterthwaite degrees of freedom = 65.8.
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Difference between Strength Means at Times k and ¢

(Averaging across Programs)

n;

3
anz (Vi — Yije)

3
1
g § ylk ylﬂ =
: l:l ! ]:1

= Tk = Te+ Yk — Ve
1 3 1 n;
325 2 (e — )
i=1 " j=1

Note that subject effects cancel out.

W] =

Copyright ©2012 (lowa State University) Statistics 511

18/29



The variance of the estimator is
202 < 1

Thus, the standard error of the estimator is

3
2MSerror 1
5 D

i=1

Degrees of freedom
=7(16 +21420) — (1 +2 + 54+ 6 + 12) = 324,
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Difference between Strength Means for Program i and
¢at Time k

Vik — Yok = O — O + Vik — YVek + Si. — Sg. + €k — €p

1 1
Var(yix — yex) = (02 + 0}) <— + —>
n; ny

6 1 1 1
Ss€ = 7 Serror + iMSsubj(prog) ;1 + I’l_g

Cochran-Satterthwaite degrees of freedom = 65.8.
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Difference between Strength Means at Times k and ¢

within a Program i

Vik — Vit = Tk — Te + Vik — Vit T €ik — €it

2
20;

Var(yix — yie) = Var z}: yiik — Yiie) | = i’li
]:

2
S€ = \/MSerror <_)
n;

Degrees of freedom = 324.
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Difference in Strength Means between Programs i and
¢ (Averaging across Time)

Vi = Yo. = 0 — Q¢ + Vi — Y. + Si. — Sp. + €. — ey

1 1
Var(y,.. — 0.) = (162 + 02) | — + —

1 1

Degrees of freedom = 54.
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Other Variance Matrices

We began with the model
Yijk = H+ Qi+ Sij + Tie + Yie + e€iji
where

si "% N(0, 07) independent of e; " N(0, 52).
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This model was expressed in the form
y=XB+Zu+e,

where
S11

S3n3

contained the random subject effects.
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Here

G = Var(u) = oI, R = Var(e) = ¢’I, and

> = Var(y) =ZGZ' +R

11
11
= o? _ + ng

11

o2l + o211’

ol + o211
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If you are not interested in predicting subject effects
(random subject effects are included only to introduce
correlation among repeated measures on the same
subject), you can work with an alternative expression
of the same model by using the general linear model
y = X3 + €, where

o2l + o211’

Var(y) = Var(e) =
o2l + o211
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More generally, we can replace the mixed model
y=XB+Zu+e

with the model

y=XB+¢€
where
(W0 . 0]
Var(y) = Var(e) = 0 W 0
0w
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e We can choose a structure for W that seems
appropriate based on the design and the data.

e One choice for W is a compound symmetric matrix
like we have considered previously.

e Another choice for W is an unstructured positive
definite matrix.

e A common choice for W when repeated measures
are equally spaced in time is the first order
autoregressive structure known as AR(1).
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AR(1):First Order Autoregressive Covariance
Structure

L op p>p ptp P
p 1 p p*p ptp
p>p 1 op ptp
W=o>|p p* p 1 p p*p
ot p 1o p?
Pt 1op
ot p 1

where o2 € (0,00) and p € (—1, 1) are unknown
parameters.
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