Problem 15.1 - 3c

need \(x > 0 \) \(g > 0 \) or \(x < 0 \) \(g < 0 \)

i.e. \(x \) and \(g \) must have the same sign
and \(x y + o \). \(z \) can be anything

points here. \(z \theta \)

no points libre.

\(y \) points here.

not points here.

\(\theta \) points here.
Problem 15.2 - 28

\[t = \frac{5}{4} \sqrt{16-x^2} \]

Point \((2, 3, \frac{5\sqrt{3}}{2})\)

Plane \(y = 3\)

\[\rho = \frac{5}{4} \frac{x^2 - y^2}{\sqrt{16-x^2}} \]

\[\rho \cdot x = 2 \]

\[\frac{-10}{4\sqrt{16-4}} = -\frac{5}{2} \]

\[\frac{1}{\sqrt{12}} \]

\[\frac{5}{4\sqrt{3}} \]
Problem 15.3 - 16

clock limit along x axis i.e. \(y = 0 \)

\[
\lim_{x \to 0} \frac{0}{x^2} = 0
\]

clock limit along line \(y = x \)

\[
\lim_{x \to 0} \frac{x^2 + x^3}{2x^2} = \frac{1}{2}
\]

\(0 + \frac{1}{2} \) limit does not exist.