1. You are interested in knowing whether it pays off for people like you to go on for a Ph.D. degree. You start with a large data set containing information on a random sample of college graduates. You then only consider the 30 people in this sample who are like you (same place of birth, same gender, same family income, same field of study, etc.). Your data are as follows:

Table 1: People Like Me, Classified According to Whether They Earned a Bachelors, Masters or Ph.D., and What Their Later Incomes Were.

<table>
<thead>
<tr>
<th>Degree</th>
<th>Bachelors</th>
<th>Masters</th>
<th>Ph.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>High income</td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Average income</td>
<td>1</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Low income</td>
<td>8</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTE: Assume that the difference in level of education between a Bachelors and a Masters degree is the same as the difference in the level of education between a Masters degree and a Ph.D. Likewise assume that the intervals between the 'low' and 'average' incomes and between the 'average' and 'high' incomes are equal. (Hint: See pp. 3-4 of the "Using SPSS" guide on the Stat 404 homepage for help in doing this problem.)

a. Assuming that each person with a "low income" has an income of $30,000, that each with an "average income" has one of $40,000, and that each with a "high income" has one of $50,000. What is the change in subjects' level of income that corresponds to an increase of a single level in their educations? Is this change an increment or a decrement in income?

b. What proportion of the variance in income is explained by education?

c. Is this amount of variance significant at the .05 level? (Hint: In answering this you must compare a statistic to its critical value.)
2. Add the following three compute statements plus frequency command to the program used in problem 1 for analyzing the education and income data, and rerun the program:

```
compute ysq = income**2.
compute xsq = degree**2.
compute xy = degree * income.
frequencies vars=income ysq degree xsq xy / statistics=mean.
```

a. The frequencies command will calculate the mean for each variable (i.e., for income and degree). Use the other three means generated by the command to find the sum of cross products and the sums of squared values for the income and education data in problem 1.

b. Also using these five numbers (i.e., 2 means, 1 cross product, 2 sums of squares), calculate the variances of the two variables. Then calculate the (a) slope and (b) constant from the unstandardized equation for the regression of income on education, (c) the regression sum of squares, (d) the residual sum of squares, (e) the correlation between the two variables, and (f) the F-ratio for testing whether education explains (linearly) a significant amount of variance in income.

c. On the regression output from problem 1 circle the number corresponding to each of these six statistics and clearly indicate the letter (i.e., an a, b, c, d, e, or f) associated with each. Please be sure to circle numbers and write letters conspicuously on both your calculations and the computer output. Hint: You must use your imagination in figuring out where the correlation can be found on the SPSS (not R or SAS) output. (The correlation appears there in two places. Do you understand why?)

3. Add the following five compute statements plus frequency command to your program for analyzing the education and income data:

```
compute ssx = (degree - 1.933)**2.
compute yhat = .593284 + (.727612 * degree).
compute ssregres = (yhat - 2.0)**2.
compute sserror = (income - yhat)**2.
compute sstotal = (income - 2.0)**2.
frequencies vars=ssx yhat ssregres sserror sstotal / statistics=mean.
```

The frequencies command will generate output containing five means. Use these five means (i.e., NOT those used in problem 2) to calculate (c) the regression sum of squares, (d) the residual sum of squares, (g) the mean square regression, (h) the mean square error, and (i) the total sum of squares. On the regression output from problem 1 circle
and assign the corresponding letter to each of these five letters (actually, only three more than already circled in problem 2). Again, please be sure to circle numbers and write letters conspicuously on both your calculations and the computer output. Be sure to show your calculations along with your answers. (Note: There is no total sum of squares on the R output.)

4. Obtain box plots of event RECALL by both BIRTHYR and EVENTYR. To do this you will need the following commands:

```
get file='c:\recall.sav'.
recode birthyr(28,32=30)(34,35=34.5)(36,37=36.5)(38,39=38.5)
  (40,41=40.5)(42,43=42.5)(44,45=44.5)(46,47=46.5)(48,49=48.5).
recode eventyr(45 thru 48=46.5)(52,54=53)(56,61=58.5)(63,64=63.5)
  (65,67=66)(71,73=72).
examine vars=recall by birthyr,eventyr/plot=boxplot/
   statistics=none/nototal.
```

Evaluate these plots (as discussed in class) to see how well they meet the assumptions of regression analysis. Which assumptions are met? Which ones are not met? Actually, only three assumptions can be evaluated using boxplots. The other four require familiarity with your sampling design, the regression model that you are estimating, and the theory that this model is intended to test. Assume that you are estimating a multiple regression in which "recall" is regressed on both "birthyr" and "eventyr" and that your theory is that of Karl Mannheim (as explained in the attached pages). Give specific reasons why you believe each of the remaining four assumptions are or are not met. (Hint: Do not merely list the assumptions.)

NOTE: This lab is appended with some contextual information about the recall data. On the Stat 404 homepage you will find a short user’s guide (that you will find VERY useful in completing problems 1-3 of this lab) to SPSS-PC. This statistics program—along with R and SAS—is installed on the PCs in 205 Carver Hall, as well as on computers at many other locations on campus. (See http://www.it.iastate.edu/labsdb/ for these locations.) Also note that the two recode statements in the above program collapse values on birthyr and eventyr to ensure that around 40 cases take each of these variables’ values. Finally, the “get file” command tells SPSS-PC to look for “recall.sav” in the default directory on your computer’s C-drive. To force the program to look in the drive’s root directory, change “c:\recall.sav” to “c:\recall.sav”.

3
Below please find R and SAS code for problems 1-4:

R

Directions:
Copy recall.txt into the C-drive's root (i.e., into "C:/").
Copy the below R code into the "R Console" window, and press Enter.

Code:

Problem 1
Create a data set named, "lab1," in which column vectors for "income" and "degree" are replicated for the 8 cells of the "wt" column vector
wt <- c(8,1,1,2,7,3,2,6)
income <- rep(c(1,2,3,1,2,3,2,3),wt)
degree <- rep(c(1,1,1,2,2,2,3,3),wt)
lab1 <- data.frame(cbind(income,degree))
attach(lab1)

Regression and correlation
reg1 <- lm(income~degree)
summary(reg1)
cor(income,degree)

ANOVA
anova1 <- aov(income~degree)
summary(anova1)

Problem 2
Create and attach 3 new variables to the data set, "lab1"
lab1$xsq <- degree^2
lab1$ysq <- income^2
lab1$xy <- degree*income
attach(lab1)

Display frequencies and means for 5 variables
table(income)
mean(income)
table(ysq)
mean(ysq)
table(degree)
mean(degree)
table(xsq)
mean(xsq)
table(xy)
Problem 3

Create and attach 5 more variables to the data set, "lab1"

\[\text{lab1}\$ssx} = (\text{degree} - 1.933)^2 \]
\[\text{lab1}\$yhat = 0.593284 + (0.727612 \times \text{degree}) \]

Attach(lab1)

lab1$yhat is attached here so that it can be used in the next 2 lines

\[\text{lab1}\$ssregres = (\text{yhat} - 2.0)^2 \]
\[\text{lab1}\$sserror = (\text{income} - \text{yhat})^2 \]
\[\text{lab1}\$sstotal = (\text{income} - 2.0)^2 \]

Attach(lab1)

Display frequencies and give means for these 5 variables

\(\text{table(ssx)} \)
\(\text{mean(ssx)} \)
\(\text{table(yhat)} \)
\(\text{mean(yhat)} \)
\(\text{table(ssregres)} \)
\(\text{mean(ssregres)} \)
\(\text{table(sserror)} \)
\(\text{mean(sserror)} \)
\(\text{table(sstotal)} \)
\(\text{mean(sstotal)} \)

Problem 4

Read recall.txt into a file named, "recall"

\(\text{recall} \leftarrow \text{read.table('C:/recall.txt')} \)

Assign names to the 4 variables, and attach them to this file

\(\text{names(recall)} \leftarrow c("birthyr","event","eventyr","recall") \)

Attach(recall)

Collapse birthyr (variable 1 in this file) Note: "|" means "or"

\(\text{recall[\text{birthyr}=28 | \text{birthyr}=32,1]=30} \)
\(\text{recall[\text{birthyr}=34 | \text{birthyr}=35,1]=34.5} \)
\(\text{recall[\text{birthyr}=36 | \text{birthyr}=37,1]=36.5} \)
\(\text{recall[\text{birthyr}=38 | \text{birthyr}=39,1]=38.5} \)
\(\text{recall[\text{birthyr}=40 | \text{birthyr}=41,1]=40.5} \)
\(\text{recall[\text{birthyr}=42 | \text{birthyr}=43,1]=42.5} \)
\(\text{recall[\text{birthyr}=44 | \text{birthyr}=45,1]=44.5} \)
\(\text{recall[\text{birthyr}=46 | \text{birthyr}=47,1]=46.5} \)
\(\text{recall[\text{birthyr}=48 | \text{birthyr}=49,1]=48.5} \)
Collapse eventyr (variable 3 in this file)
recall[eventyr >= 45 & eventyr <= 48, 3] = 46.5
recall[eventyr == 52 | eventyr == 54, 3] = 53
recall[eventyr == 56 | eventyr == 51, 3] = 58.5
recall[eventyr == 63 | eventyr == 64, 3] = 63.5
recall[eventyr == 65 | eventyr == 67, 3] = 66
recall[eventyr == 71 | eventyr == 73, 3] = 72

Display frequency tables and boxplots
table(recall$birthyr)
boxplot(recall ~ birthyr, data = recall, xlab = "Year of birth", ylab = "Proportion recalling event")

open up another graphics device for the second boxplot
x11()
table(recall$eventyr)
boxplot(recall ~ eventyr, data = recall, xlab = "Year of event", ylab = "Proportion recalling event")

Two additional bits of information that we shall use later in the course (i.e., are in recall.sps but not required for this problem)
First, assign a new variable to the 5th column in the "recall" data set that gives the number of respondents in a specific birth cohort (i.e., in a cohort having the same value of birthyr)
recall[birthyr == 28, 5] = 44
recall[birthyr == 32, 5] = 47
recall[birthyr == 34, 5] = 67
recall[birthyr == 35, 5] = 51
recall[birthyr == 36, 5] = 52
recall[birthyr == 37, 5] = 63
recall[birthyr == 38, 5] = 63
recall[birthyr == 39, 5] = 78
recall[birthyr == 40, 5] = 73
recall[birthyr == 41, 5] = 80
recall[birthyr == 42, 5] = 87
recall[birthyr == 43, 5] = 94
recall[birthyr == 44, 5] = 87
recall[birthyr == 45, 5] = 66
recall[birthyr == 46, 5] = 97
recall[birthyr == 47, 5] = 86
recall[birthyr == 48, 5] = 65
recall[birthyr == 49, 5] = 48

Assign the name, "n," to this cohort size variable
names(recall)[5] <- "n"
Second, assign a new variable to the 6th column in the “recall” data set that identifies each specific event

```
recall[event==1,6]='Hiroshima'
recall[event==2,6]='Taft-Hartley'
recall[event==3,6]='Wallace campaign'
recall[event==4,6]='NATO formation'
recall[event==5,6]='Fed. Campaign'
recall[event==6,6]='Berlin air lift'
recall[event==7,6]='Korean War'
recall[event==8,6]='McCARTHYISM'
recall[event==9,6]='Hungary'
recall[event==10,6]='Bay of Pigs'
recall[event==11,6]='NUCLEAR disarm.'
recall[event==12,6]='Cuban crisis'
recall[event==13,6]='bomb shelters'
recall[event==14,6]='UN in Congo'
recall[event==15,6]='desegregation'
recall[event==16,6]='civil rights'
recall[event==17,6]='Miss. Summer'
recall[event==18,6]='free speech mvt.'
recall[event==19,6]='Black power'
recall[event==20,6]='ghetto riots'
recall[event==21,6]='primaries'
recall[event==22,6]='Demo. convention'
recall[event==23,6]='Kent State'
recall[event==24,6]='Cambodia'
recall[event==25,6]='Viet. rallies'
recall[event==26,6]='Watergate'
```

Assign the name, “eventname,” to this event identification variable
```
names(recall)[6] <- 'eventname'
```

Display data on three variables in the “recall” data set
```
table(recall$recall)
table(recall$n)
table(recall$eventname)
```

* **SAS**

* **Directions:**
 * Copy recall.txt into the C-drive's root (i.e., into "C:\").
 * Copy the below SAS code into the "Editor" window,
 * and press the button with the figure of a little guy running.

* **Code:**
**** PROBLEM 1 ****
* Create a data set named, "lab1q1," consisting of the variables, "income" and "degree." Note: Values on the variables are repeated as many times as there are cases with that combination of these 2 variables.;
DATA lab1q1;
 INPUT income degree;
DATALINES;
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
2 1
3 1
1 2
1 2
2 2
2 2
2 2
2 2
3 2
3 2
3 2
3 2
2 3
2 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
; RUN;

* Regression with correlation matrix;
PROC REG data=lab1q1 CORR;
 MODEL income=degree;
RUN;
/**** PROBLEM 2 ****/ * Create a data set, "lab1q2," with 3 variables in addition to those in "lab1q1";
DATA lab1q2;
SET lab1q1;
ysq = income**2;
xsq = degree**2;
xy = degree*income;
RUN;

* Display frequencies and means for 5 variables;
PROC FREQ data=lab1q2;
 TABLES income ysq degree xsq xy;
RUN;
PROC MEANS;
 VAR income ysq degree xsq xy;
RUN;

/**** PROBLEM 3 ****/ * Create a data set, "lab1q3," with 5 variables in addition to those in "lab1q2";
DATA lab1q3;
SET lab1q2;
ssx = (degree - 1.933)**2;
yhat = .593284 + (.727612*degree);
ssregres = (yhat - 2.0)**2;
sserror = (income - yhat)**2;
sstotal = (income - 2.0)**2;
RUN;

* Display frequencies and give means for these 5 variables;
PROC FREQ data=lab1q3;
 TABLES ssx yhat ssregres sserror sstotal;
RUN;
PROC MEANS;
 VAR ssx yhat ssregres sserror sstotal;
RUN;

/**** PROBLEM 4 ****/ * Read recall.txt into a file named, "recall";
DATA recall;
 INFILE 'C:\recall.txt';
 INPUT birthyr event eventyr recall;
* Create a data set, "recall2," in which 2 of its variables are modified from the data set, "recall";
DATA recall2;
SET recall;

* Collapse birthyr;
 IF (birthyr=28) OR (birthyr=32) THEN birthyr=30;
 IF (birthyr=34) OR (birthyr=35) THEN birthyr=34.5;
 IF (birthyr=36) OR (birthyr=37) THEN birthyr=36.5;
 IF (birthyr=38) OR (birthyr=39) THEN birthyr=38.5;
 IF (birthyr=40) OR (birthyr=41) THEN birthyr=40.5;
 IF (birthyr=42) OR (birthyr=43) THEN birthyr=42.5;
 IF (birthyr=44) OR (birthyr=45) THEN birthyr=44.5;
 IF (birthyr=46) OR (birthyr=47) THEN birthyr=46.5;
 IF (birthyr=48) OR (birthyr=49) THEN birthyr=48.5;

* Collapse eventyr;
 IF (eventyr ge 45) AND (eventyr le 48) THEN eventyr=46.5;
 IF (eventyr=52) OR (eventyr=54) THEN eventyr=53;
 IF (eventyr=56) OR (eventyr=61) THEN eventyr=58.5;
 IF (eventyr=63) OR (eventyr=64) THEN eventyr=63.5;
 IF (eventyr=65) OR (eventyr=67) THEN eventyr=66;
 IF (eventyr=71) OR (eventyr=73) THEN eventyr=72;
RUN;

* Display boxplots;
PROC BOXPLOT data=recall2;
 PLOT recall*birthyr / BOXSTYLE=SCHEMATIC;
RUN;
* SAS requires that grouping variables are sorted in increasing order prior to plotting;
PROC SORT data=recall2;
 BY eventyr;
PROC BOXPLOT data=recall2;
 PLOT recall*eventyr / BOXSTYLE=SCHEMATIC;
RUN;
Mannheim on Generations

Karl Mannheim's theory of generations is encapsulated in his article "The Problem of Generations"—one of the earliest and most eloquent treatises on the role of generations in ideological development. In contrast to Marx's "class" concept, Mannheim differentiated actors according to whether they shared the same social location (i.e., the same historical period, geographic region, and culture).

The fact that people are born at the same time, or that their youth, adulthood, and old age coincide, does not in itself involve similarity of location; what does create a similar location is that they are in a position to experience the same events and data, etc., and especially that these experiences impinge upon a similarly 'stratified' consciousness (1952, p. 297).

Notice two important elements here: First, a generation can only form among contemporaries who are proximate—unlike say, "the young people of China and Germany about 1800" (1952, p. 298). Second, although the consciousness of the entire society is simultaneously exposed to events and experiences, Mannheim claimed that only the stratum of contemporaries between the ages of 17 and 251 use these data as the basis for the modes of thought and behavior that are to characterize their generation.

It is only then that life's problems begin to be located in a 'present' and are experienced as such. That level of data and attitudes which social change has rendered problematical, and which therefore requires reflection, has now been reached ... (1952, p. 300).

Older members of society also experience the same events, yet they interpret them according to perspectives they developed during their formative years. Since each older generation has its own Weltanschauung (or its own "natural view" of current events), the experiencing of these events becomes "stratified" by a multitude of generational perspectives. Whereas current events produce variously stratified experiences among older generations, they forge a new generational style among 17- to 25-year-olds. This generational style comprises the youths' answers to the problems their experiences have generated. Thus for the current events at a particular point in the history of a given society, Mannheim's process of generation formation might be diagrammed as in Diagram 1.

As current events take place, people's experiences are stratified as they interpret the events according to the world views of their respective generations. Concurrently, however, youth between the ages of 17 and 25 form a new world view (or generational style) in response to their exposure to the events. The more atypical these events, the more likely the youths' generation will differ from those of their elders. Youth and chil-

Diagram 1.
dren younger than 17 are not cognizant of the events and thus, in this sense, do not experience them.

The intent of this paper is to test one small aspect of Mannheim's theory of generations, specifically, that of the "black box" in the middle of the generational process he outlines. Although three boxes are drawn in the above diagram, the distinctions between them are artificial—merely emphasizing the greater sensitivity to current events more characteristic of those in their formative years than of younger and older persons. Thus the premise to be evaluated is that people are more sensitive to events that occur during their formative years than to events that occur earlier or later in their lives. Since in this context the premise is subject to an empirical test, I shall refer to it as Mannheim's sensitivity hypothesis.

Data

In the fall of 1973 Kurt and Gladys Lang administered questionnaires to 1,321 persons who sometime between 1945 and 1972 were awarded the prestigious Wilson Fellowship for their first year of graduate study. Wilsons generally have academic careers. Of the respondents who had completed their doctorates, 63 percent held faculty positions at 4-year colleges. Another 13 percent were employed by other educational institutions or by foundations. Furthermore, Wilsons are likely to be aware of political occurrences; over 87 percent of the respondents indicated it as highly or somewhat important that they "keep up to date with political affairs."

Table 1 displays the percentages of 18 cohorts of Wilsons who indicated "vividly remembering" each of 26 political events. There is a twofold justification for using these data in a test of Mannheim's sensitivity hypothesis: First, given their greater access to political information in academia and their particularly high interest in politics, Wilsons comprise an opportune population for an analysis of the recall of political events. Second, if we assume that at a minimum, people are more likely to remember such events as were instrumental in their ideological development, Mannheim's ideas would lead us to hypothesize that Wilsons were more likely to recall those events that they experienced as young adults.

Since we know the dates of the political events listed in the left-hand column of Table 1, we can calculate the ages of cohort members at the time of each event. If we find that events which occurred during Wilsons' formative years were recalled disproportionately more than those taking place at different times in their life course, we have evidence in support of Mannheim's contention that formative years are characterized as a period of sensitivity to phenomena around one.

As they stand, however, the data in Table 1 do not suggest formative differences among the cohorts. In particular, three patterns of recall are so prevalent that no clear intercohort tendencies are apparent:

1. Maturity—The youngest Wilsons are too young to vividly remember remote events. (The youngest four cohorts were not even born at the time of the bombing of Hiroshima; others were mere children.)
2. Recency—The more remote the time an event occurred, the more likely it has been forgotten.
3. Impact—Some events were simply more socially significant or dramatic than others. For example, the Berlin air lift was a much more impressive political event than was the world federalist campaign. (This holds across all cohorts and even though both events took place in the same year.)
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hiroshima</td>
<td>86.4</td>
<td>85.1</td>
<td>70.1</td>
<td>58.8</td>
<td>48.1</td>
<td>38.1</td>
<td>22.2</td>
<td>15.4</td>
<td>6.8</td>
<td>3.8</td>
<td>2.3</td>
<td>1.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Taft-Hartley</td>
<td>47.7</td>
<td>38.3</td>
<td>23.4</td>
<td>23.5</td>
<td>7.7</td>
<td>7.9</td>
<td>4.8</td>
<td>4.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wallace Campaign</td>
<td>52.3</td>
<td>46.8</td>
<td>35.8</td>
<td>13.7</td>
<td>13.5</td>
<td>11.1</td>
<td>4.8</td>
<td>1.3</td>
<td>1.4</td>
<td>1.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NATO Formation</td>
<td>50.0</td>
<td>36.2</td>
<td>28.4</td>
<td>21.6</td>
<td>13.5</td>
<td>22.2</td>
<td>9.5</td>
<td>3.4</td>
<td>3.8</td>
<td>2.3</td>
<td>1.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fed. Campaign</td>
<td>20.5</td>
<td>14.9</td>
<td>9.0</td>
<td>5.9</td>
<td>1.9</td>
<td>4.8</td>
<td>4.8</td>
<td>4.8</td>
<td>1.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Berlin Air Lift</td>
<td>77.3</td>
<td>78.7</td>
<td>62.7</td>
<td>74.5</td>
<td>55.8</td>
<td>55.6</td>
<td>49.2</td>
<td>37.2</td>
<td>21.9</td>
<td>16.2</td>
<td>14.9</td>
<td>14.9</td>
<td>5.7</td>
<td>3.0</td>
<td>8.2</td>
<td>9.3</td>
<td>6.1</td>
</tr>
<tr>
<td>Korean War</td>
<td>88.6</td>
<td>78.7</td>
<td>83.6</td>
<td>80.4</td>
<td>65.4</td>
<td>73.0</td>
<td>71.4</td>
<td>70.5</td>
<td>58.9</td>
<td>45.0</td>
<td>39.1</td>
<td>26.6</td>
<td>24.1</td>
<td>16.7</td>
<td>5.1</td>
<td>4.6</td>
<td>3.1</td>
</tr>
<tr>
<td>McCarthyism</td>
<td>75.6</td>
<td>72.3</td>
<td>65.7</td>
<td>66.7</td>
<td>48.1</td>
<td>54.0</td>
<td>50.8</td>
<td>44.9</td>
<td>32.9</td>
<td>32.5</td>
<td>27.6</td>
<td>19.1</td>
<td>11.5</td>
<td>4.5</td>
<td>8.2</td>
<td>5.8</td>
<td>1.5</td>
</tr>
<tr>
<td>Hungary</td>
<td>86.4</td>
<td>85.1</td>
<td>87.3</td>
<td>80.9</td>
<td>85.9</td>
<td>84.3</td>
<td>81.3</td>
<td>76.2</td>
<td>68.8</td>
<td>70.1</td>
<td>68.1</td>
<td>66.7</td>
<td>71.2</td>
<td>48.4</td>
<td>44.2</td>
<td>23.1</td>
<td>29.2</td>
</tr>
<tr>
<td>Bay of Pigs</td>
<td>86.4</td>
<td>83.0</td>
<td>89.5</td>
<td>86.3</td>
<td>86.5</td>
<td>85.9</td>
<td>87.3</td>
<td>84.6</td>
<td>80.8</td>
<td>76.5</td>
<td>66.7</td>
<td>66.0</td>
<td>74.7</td>
<td>74.2</td>
<td>63.9</td>
<td>65.1</td>
<td>58.5</td>
</tr>
<tr>
<td>Nuclear Disarm.</td>
<td>59.1</td>
<td>61.7</td>
<td>59.7</td>
<td>54.9</td>
<td>36.5</td>
<td>47.6</td>
<td>46.0</td>
<td>47.4</td>
<td>41.1</td>
<td>31.3</td>
<td>33.3</td>
<td>40.4</td>
<td>33.3</td>
<td>40.9</td>
<td>24.7</td>
<td>22.1</td>
<td>18.5</td>
</tr>
<tr>
<td>Cuban Crisis</td>
<td>61.2</td>
<td>67.8</td>
<td>76.6</td>
<td>73.1</td>
<td>70.6</td>
<td>64.8</td>
<td>66.8</td>
<td>66.5</td>
<td>67.3</td>
<td>73.6</td>
<td>74.5</td>
<td>71.3</td>
<td>75.8</td>
<td>70.1</td>
<td>67.4</td>
<td>61.5</td>
<td>58.3</td>
</tr>
<tr>
<td>Bomb Shelters</td>
<td>61.6</td>
<td>67.6</td>
<td>76.6</td>
<td>73.1</td>
<td>70.6</td>
<td>64.8</td>
<td>66.8</td>
<td>66.5</td>
<td>67.3</td>
<td>73.6</td>
<td>74.5</td>
<td>71.3</td>
<td>75.8</td>
<td>70.1</td>
<td>67.4</td>
<td>61.5</td>
<td>58.3</td>
</tr>
<tr>
<td>UN in Congo</td>
<td>45.4</td>
<td>53.2</td>
<td>56.7</td>
<td>47.1</td>
<td>42.8</td>
<td>42.9</td>
<td>51.3</td>
<td>31.5</td>
<td>42.5</td>
<td>39.1</td>
<td>33.0</td>
<td>41.4</td>
<td>48.5</td>
<td>40.2</td>
<td>33.7</td>
<td>38.8</td>
<td>39.6</td>
</tr>
<tr>
<td>Desegregation</td>
<td>56.8</td>
<td>64.9</td>
<td>76.1</td>
<td>75.8</td>
<td>72.1</td>
<td>64.7</td>
<td>65.7</td>
<td>66.7</td>
<td>67.1</td>
<td>72.4</td>
<td>71.3</td>
<td>75.8</td>
<td>70.1</td>
<td>67.4</td>
<td>61.5</td>
<td>58.3</td>
<td></td>
</tr>
<tr>
<td>Civil Rights</td>
<td>62.2</td>
<td>67.8</td>
<td>76.6</td>
<td>73.1</td>
<td>70.6</td>
<td>64.8</td>
<td>66.8</td>
<td>66.5</td>
<td>67.3</td>
<td>73.6</td>
<td>74.5</td>
<td>71.3</td>
<td>75.8</td>
<td>70.1</td>
<td>67.4</td>
<td>61.5</td>
<td>58.3</td>
</tr>
<tr>
<td>Miss. Summer</td>
<td>61.4</td>
<td>68.1</td>
<td>68.7</td>
<td>54.9</td>
<td>61.5</td>
<td>65.6</td>
<td>65.1</td>
<td>61.5</td>
<td>50.7</td>
<td>60.0</td>
<td>65.5</td>
<td>53.2</td>
<td>60.9</td>
<td>59.1</td>
<td>46.4</td>
<td>53.5</td>
<td>49.2</td>
</tr>
<tr>
<td>Free Speech Mtv.</td>
<td>65.9</td>
<td>68.1</td>
<td>68.7</td>
<td>64.7</td>
<td>53.8</td>
<td>68.8</td>
<td>78.6</td>
<td>76.4</td>
<td>71.8</td>
<td>63.0</td>
<td>58.7</td>
<td>69.0</td>
<td>70.2</td>
<td>67.8</td>
<td>71.2</td>
<td>56.7</td>
<td>59.3</td>
</tr>
<tr>
<td>Black Power</td>
<td>67.7</td>
<td>78.7</td>
<td>71.6</td>
<td>64.7</td>
<td>76.9</td>
<td>81.3</td>
<td>79.4</td>
<td>80.8</td>
<td>76.7</td>
<td>71.2</td>
<td>74.7</td>
<td>76.6</td>
<td>72.4</td>
<td>74.2</td>
<td>73.2</td>
<td>73.3</td>
<td>69.2</td>
</tr>
<tr>
<td>Ghettos Riots</td>
<td>93.2</td>
<td>85.1</td>
<td>85.1</td>
<td>86.3</td>
<td>86.5</td>
<td>95.3</td>
<td>88.9</td>
<td>83.3</td>
<td>86.3</td>
<td>88.7</td>
<td>85.1</td>
<td>87.2</td>
<td>86.2</td>
<td>82.4</td>
<td>87.6</td>
<td>88.4</td>
<td>84.6</td>
</tr>
<tr>
<td>Primaries</td>
<td>93.2</td>
<td>85.1</td>
<td>85.1</td>
<td>86.3</td>
<td>86.5</td>
<td>95.3</td>
<td>88.9</td>
<td>83.3</td>
<td>86.3</td>
<td>88.7</td>
<td>85.1</td>
<td>87.2</td>
<td>86.2</td>
<td>82.4</td>
<td>87.6</td>
<td>88.4</td>
<td>84.6</td>
</tr>
<tr>
<td>Demo. Convention</td>
<td>93.2</td>
<td>85.1</td>
<td>89.5</td>
<td>84.3</td>
<td>88.9</td>
<td>81.7</td>
<td>83.3</td>
<td>90.4</td>
<td>90.0</td>
<td>96.2</td>
<td>80.4</td>
<td>89.7</td>
<td>84.0</td>
<td>87.4</td>
<td>89.4</td>
<td>84.9</td>
<td>80.0</td>
</tr>
<tr>
<td>Kent State</td>
<td>97.7</td>
<td>89.4</td>
<td>92.5</td>
<td>82.3</td>
<td>88.5</td>
<td>96.9</td>
<td>92.1</td>
<td>88.5</td>
<td>60.4</td>
<td>95.0</td>
<td>90.8</td>
<td>93.8</td>
<td>93.8</td>
<td>93.8</td>
<td>93.8</td>
<td>93.8</td>
<td>93.8</td>
</tr>
<tr>
<td>Cambodia</td>
<td>88.6</td>
<td>85.1</td>
<td>85.1</td>
<td>80.4</td>
<td>82.7</td>
<td>85.9</td>
<td>85.7</td>
<td>82.0</td>
<td>82.2</td>
<td>90.0</td>
<td>85.1</td>
<td>94.0</td>
<td>85.4</td>
<td>87.6</td>
<td>96.5</td>
<td>83.1</td>
<td>91.7</td>
</tr>
<tr>
<td>Viet. Rallies</td>
<td>84.1</td>
<td>76.6</td>
<td>77.6</td>
<td>74.5</td>
<td>80.8</td>
<td>82.8</td>
<td>80.9</td>
<td>84.6</td>
<td>82.2</td>
<td>82.5</td>
<td>89.7</td>
<td>84.0</td>
<td>87.4</td>
<td>89.4</td>
<td>84.9</td>
<td>80.0</td>
<td>87.5</td>
</tr>
<tr>
<td>Watergate</td>
<td>93.2</td>
<td>91.5</td>
<td>89.5</td>
<td>96.1</td>
<td>96.1</td>
<td>95.3</td>
<td>92.1</td>
<td>95.9</td>
<td>95.9</td>
<td>94.2</td>
<td>87.2</td>
<td>95.4</td>
<td>93.8</td>
<td>93.8</td>
<td>93.8</td>
<td>93.8</td>
<td>93.8</td>
</tr>
</tbody>
</table>

*Year of birth.
†Number of respondents in birth-cohort.