Roles and activities of Aux/IAA proteins in Arabidopsis

Jason W. Reed

Auxin induces various distinct developmental responses, partly by regulating gene expression. The Aux/IAA genes are a large gene family, many of which are induced by auxin. Work on Arabidopsis Aux/IAA genes has begun to reveal that they can regulate development and auxin-induced gene expression. Furthermore, auxin responses require Aux/IAA protein turnover. Finally, recent evidence suggests that Aux/IAA proteins can mediate light responses. Work in the near future should test whether Aux/IAA proteins are antennae that connect auxin and light signals to endogenous developmental responses.

Auxins regulate diverse cellular and developmental responses in plants, including cell division, expansion and differentiation, patterning of embryos, vasculature and other tissues, and distribution of growth between primary and lateral root and shoot meristems. This multiplicity of regulatory activities has spurred considerable interest in mechanisms of auxin signaling and response. Auxin might regulate some cellular responses (such as expansion or polarization) through direct effects on membrane or cytoskeletal functions, but it also regulates the expression of many genes whose products probably carry out most developmental responses.

Proteins of two related families called Aux/IAA and ARF regulate auxin-induced gene expression. The Aux/IAA genes encoding the Aux/IAA proteins are themselves regulated by auxin, and were discovered and named for this property. In this article, I discuss recent results that reveal developmental functions of Aux/IAA proteins, discuss how auxin and/or other signals might regulate their activity, and highlight some of the questions that might be answered in the near future.*

What is an Aux/IAA gene?

Aux/IAA genes were first isolated as members of a family of genes that were rapidly induced in response to auxin (indole-3-acetic acid, IAA). Additional Aux/IAA genes were subsequently found based on sequence similarity to known Aux/IAA genes or in yeast two-hybrid assays with Aux/IAA proteins. Aux/IAA genes have been found in dicots (pea, soybean, Medicago truncatula, Arabidopsis, tomato, tobacco and cotton), grasses (maize, rice) and pine trees. They have not been found in bacterial, animal or fungal genomes and are therefore probably unique to plants.

Canonical Aux/IAA proteins share four conserved amino acid sequence motifs called domains I, II, III and IV (Fig. 1), although several predicted proteins lacking one or more of these domains are also included in the family. Aux/IAA proteins also have nuclear-localization sequences and representative Aux/IAA protein fusions localize to the nucleus. Because domains I–IV are conserved in multiple Aux/IAA proteins, they presumably have important structural or regulatory functions. Domain II is the smallest and least strictly conserved of these, and it has not been ascribed a specific biochemical activity. Domain III is highly conserved and mutations in this domain increase activity of the corresponding proteins by stabilizing them. Domain IV therefore destabilizes Aux/IAA proteins.

Yeast two-hybrid assays have shown that domains III and IV can mediate homo- and heterodimerization between Aux/IAA proteins and heterodimerization between Aux/IAA proteins and ARF proteins (which share these domains). Domain IIIA mutant versions of ARF3/IAA17 do not dimerize, indicating that domain III is required for dimerization. Domain III has sequence similarity to the ArcA bacteriophage repressor family, which folds into a βααβαα structure, and a synthetic peptide containing domain III (but not domain IV) can fold and dimerize in vitro. Thus, domain III probably forms a true domain in the protein structural sense and might be sufficient by itself for dimerization. Domain IV might also contribute to dimerization, and it has a functional nuclear localization signal.

The divergent amino acids between these conserved domains might simply be "filler" loops that enable the conserved domains to adopt the correct tertiary structure, or they might mediate interactions with other proteins, thereby conferring functional specificity on different members of the family. Such functions could include specific regulatory inputs from different endogenous or environmental signals, or different interactions with transcription factors. If the divergent interdomain loops indeed confer specific functional attributes on particular Aux/IAA proteins then Aux/IAA proteins that lack such loops might have more limited and general functions than those with large loops.

Additional functional specificity could arise from differential gene expression. Aux/IAA genes are expressed in tissue-specific patterns, and auxin induces different Aux/IAA genes to varying degrees.

*Additional details about these proteins and other aspects of auxin metabolism and signaling will appear this year in special review issues of Plant Molecular Biology and Journal of Plant Growth Regulation.
ARF3/ETTIN lacks domain II and domains. For example, of the conserved but not all, ARF proteins middle region of some, of Aux/IAA proteins. The corresponding domains similar to the domains III and IV are domains form between a domains vary in size, so between the conserved Aux/IAA or ARF proteins have C-terminal domains homologous to Aux/IAA proteins is about 9 amino acids long, domain II is ~15 amino acids long, domain III is ~40 amino acids long and domain IV is ~45 amino acids long. Sequences between the conserved domains vary in size, so that the conserved domains form between a third and two thirds of each protein. ARF domains III and IV are similar to the corresponding domains of Aux/IAA proteins. The middle region of some, but not all, ARF proteins can activate transcription. Some Aux/IAA and ARF proteins lack one or more of the conserved domains. For example, IAA20 lacks domain II and ARF/ETTIN lacks domains III and IV.

and with different kinetics. Auxin does not induce, and can even repress, other Aux/IAA genes. These differences in auxin induction kinetics suggest that some Aux/IAA genes are part of early responses, whereas others might be secondary auxin response genes.

The completion of the Arabidopsis genome sequence has provided the most complete information on the Aux/IAA gene family for this species. Arabidopsis has 25 deduced genes encoding Aux/IAA proteins that have all four of the conserved domains that define the family. In addition, at least four predicted sequences bear similarity to portions of Aux/IAA proteins but lack one or two of the conserved domains. Some of the deduced sequences might be pseudogenes, because no information about expression is available for several of them. Arabidopsis Aux/IAA genes have been given IAAX designations (such as IAA1 and IAA2) and several of them have compound names (e.g. AXR3/IAA17) that reflect the phenotypes of mutants in the corresponding genes. Arabidopsis Aux/IAA and ARF gene Accession numbers, genomic locations and protein sequence phylogenies have been compiled in two recent reviews.

Aux/IAA proteins interact with ARF proteins

A related class of 23 Arabidopsis genes called ARF’s encode auxin response factors. Typical ARF proteins have C-terminal domains homologous to domains III and IV of Aux/IAA proteins (Fig. 1). Domains III and IV enable ARF proteins to interact with Aux/IAA proteins in yeast two-hybrid assays. ARF proteins also have a highly conserved N-terminal DNA-binding domain that binds to auxin-response elements in promoters of auxin-regulated genes, and a divergent middle region that can activate transcription in some ARFs but has unknown function in others. Taken together, these results suggest that Aux/IAA proteins regulate gene expression by interacting with ARF proteins to alter their activity (Fig. 2).

In light of this model, functions of ARF proteins are likely to provide insight into functions of Aux/IAA proteins that might interact with them. Mutations in genes encoding three ARF proteins indicate that they mediate auxin responses. The ettn/arf3 mutations affect floral patterning, monopteros/arf5 mutations affect formation of vasculature and embryonic phyllotaxy, and msg1/nph4/arf7 mutations decrease auxin sensitivity in the hypocotyl and leaf, and cause defective tropic responses and auxin-regulated gene expression. All three of these developmental phenotypes reflect processes that depend on spatial gradients of auxin concentration, suggesting that these three ARF proteins might control cell fate decisions in response to local auxin concentrations. ETTIN/ARF 3 probably does not interact physically with Aux/IAA proteins because it lacks domains III and IV. However, competition among ARFs for auxin-binding promoter elements might provide an indirect means for interactions with Aux/IAA proteins.

Developmental functions of Aux/IAA genes

Mutations in Aux/IAA genes have been detected in several distinct screens for plants with altered auxin response or morphology (Table 1), and characterizations of these mutants have begun to reveal developmental roles of the corresponding genes. Each of these mutations changes an amino acid in domain II (Table 1), and genetic and molecular studies indicate that they cause gain of function. For each mutation, some or all of the mutant phenotypes are dominant or semi dominant, and the domain II mutant alleles axr2-1, axr3-1, shy2-2, iaa28-1, srl-1 and bdl-1 can each recapitulate mutant phenotypes when introduced into wild-type plants (P. Nagpal and J.W. Reed, unpublished). Moreover, intragenic mutations with molecular characteristics of loss-of-function mutations suppress the phenotypes of the gain-of-function axr2-1, axr3-1 and shy2-2 mutations. Several of these intragenic suppressors affect single amino acids in domains I, III or IV, confirming the importance of these domains for activity of the gain-of-function proteins.

These domain II mutations in different Aux/IAA genes affect various tissues and developmental responses, including root or shoot gravitropism, lateral root formation, shoot apical dominance, stem elongation, leaf expansion and leaf formation in the dark (Table 1). In general, the phenotypes can be explained in terms of reduced auxin response, and some auxin-induced genes are expressed at lower levels in axr2-1 and shy2-2 mutants (Q. Tian and J.W. Reed, unpublished). However, axr3-1 plants have some phenotypes consistent with hypersensitivity to auxin, such as ectopic expression of an auxin-regulated gene and formation of adventitious roots. Therefore, Aux/IAA proteins might both activate and inhibit auxin responses, depending on the particular Aux/IAA protein and/or the tissue.
Rub- and ubiquitin-modification pathways are indicated in abbreviated form. A putative Aux/IAA turnover of Aux/IAA proteins and regulatory outputs acting through ARF proteins are indicated. Biochemically, putative auxin- or light-regulated phosphorylation events, ubiquitin-mediated particular processes, and question marks indicate putative regulatory connections that would be worth testing further. The model is based on correlative results and is therefore probably incorrect in some details.

Fig. 2. Working model indicating possible input and output regulatory interactions of Aux/IAA proteins. The model is based on correlative results and is therefore probably incorrect in some particulars. Question marks indicate putative regulatory connections that would be worth testing biochemically. Putative auxin- or light-regulated phosphorylation events, ubiquitin-mediated processes, and question marks indicate putative regulatory connections that would be worth testing further. The model is based on correlative results and is therefore probably incorrect in some details.

Taken together, the gain-of-function mutant phenotypes suggest that Aux/IAA proteins can regulate many of the developmental processes governed by auxin. However, as guides to the normal functions of these genes, the phenotypes should be regarded with some caution because they might arise from levels of Aux/IAA protein activity that are higher than any reached in the normal course of development. Ideally, one should compare these results with phenotypes of loss-of-function mutations in the same genes. Unfortunately, the putative Aux/IAA gene null mutants that have been characterized have subtle phenotypes, probably because of redundant activities or feedback regulatory loops that enable the mutant plants to compensate for absence of a particular Aux/IAA protein. Given the number of Aux/IAA proteins, the possible promiscuity of their dimerization interactions and the likelihood of feedback regulation, it will take considerable effort to sort out the precise functions of each one.

Does auxin regulate Aux/IAA protein activity?

Notwithstanding these interpretational uncertainties, the genetic results do suggest that Aux/IAA proteins regulate gene expression responses to auxin, and studies of Aux/IAA protein biochemistry have begun to suggest that they might be targets of auxin and possibly other signals. Aux/IAA proteins have half-lives as short as 6–8 min, and the domain II mutations probably increase protein function by stabilizing the corresponding protein. The axr3-1 and shy2-2 mutant plants have higher steady-state levels of the corresponding proteins than do wild-type plants, and the axr3-1 mutation increased the half-life of AXR3/IAA17 (Refs 4, 32). Similarly, fusion proteins with Ps-IAA6 or AXR3/IAA17 are degraded rapidly in plant cells, and mutations in domain II decrease this degradation (S. Kepinski and O. Leyser, pers. commun.).

These findings might explain why several mutations that affect protein turnover reduce auxin responses. For example, mutations in components of the SCFTIR1 ubiquitin ligase complex cause auxin-resistant root growth. An attractive model to explain these phenotypes is that SCFTIR1 ubiquitinates Aux/IAA proteins and thereby targets them to the proteasome (Fig. 2). SCFTIR1 might normally ubiquitinate Aux/IAA proteins that have an intact domain II. Either inactivation of the complex or mutation of domain II would then lead to higher steady-state levels of one or more Aux/IAA proteins, in turn decreasing auxin response. The cullin component of the SCFTIR1 ubiquitin ligase is itself regulated by AXR1- and ECR1-dependent modification with the ubiquitin-like molecule Rub, and mutations in axr1 also confer auxin-resistant root growth and gene induction, and have reduced apical dominance.

The phenotypes of axr1 and tir1 mutants are less severe than those of gain-of-function Aux/IAA gene mutants, which raises the issue of whether the hypothesized stabilization of Aux/IAA proteins can fully account for the axr1 and tir1 phenotypes. Perhaps SCFTIR1 targets only a subset of Aux/IAA proteins and other ubiquitin ligases (possibly homologous to SCFTIR1) ubiquitinate other Aux/IAA proteins. Both AXR1 and TIR1 are members of multigene families, suggesting that the single mutants might retain an ability to ubiquitinate Aux/IAA proteins. Another potential complication is that Aux/IAA proteins might antagonize each other, such that stabilizing multiple Aux/IAA proteins might cause more subtle phenotypes than stabilizing just one. For example, Aux/IAA proteins might inhibit each other by dimerizing, and they can also repress expression of each other’s genes. Finally, in addition to stabilizing the proteins, domain II mutations might confer an added biochemical activity that is not mimicked by mutating the ubiquitination apparatus.

In light of this working model, a question of immediate interest is whether auxin regulates Aux/IAA protein turnover. Such regulation could explain how auxin activates gene expression. There is no evidence that auxin regulates Rub-conjugating or SCFTIR1-ubiquitin-ligase activities. Perhaps the most likely alternative is that auxin causes modification of Aux/IAA proteins and that such modification enables...
them to be recognized by SCFTIR1. In yeasts and animals, phosphorylation regulates ubiquitination and the subsequent turnover of many proteins33. SHY2/IAA3 can be phosphorylated in vivo32, although no data are available on which factor(s) regulate this phosphorylation. Both the PINOID kinase and MAP kinases have been implicated in auxin responses, and they are therefore candidates for phosphorylating and thereby possibly regulating the turnover of Aux/IAA proteins. Mutations in PINOID cause cotyledon fusions similar to those of mp/arf5 and ia18-1, the inference that the indicated mutation causes the phenotypes is based on genetic linkage only. The mutation in shy2-1 in particular causes a conservative amino acid change, and therefore requires additional evidence.

Other data suggest that light might activate Aux/IAA proteins by stabilizing them. The domain II mutations axr2-1, axr3-1, shy2-1 and shy2-2 each cause seedlings to develop leaves when grown in darkness28,42–44. Also consistent with this idea, an antisense construct that decreases function of the Arabidopsis COP9 complex, which is required to prevent de-etiolation in darkness, decreased the turnover rate of a Ps-IAA6::luciferase protein fusion in transgenic plants45. Intriguingly, the COP9 complex removes Rub modification of cullins, the reverse enzymatic activity to that catalyzed by AXR1 and ECR1 (Refs 45,46).

Table 1. Mutations in domain II of different Aux/IAA genesa

<table>
<thead>
<tr>
<th>Aux/IAA gene and mutationsb</th>
<th>Phenotypes</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXR2/IAA7 axr2-1</td>
<td>Short hypocotyl, leaves in dark, wavy leaves, no root hairs, agravitropic root and shoot</td>
<td>28,30,54,55</td>
</tr>
<tr>
<td>AXR3/IAA7 axr3-1</td>
<td>Short hypocotyl, leaves in dark, upcurled leaves, no root hairs, agravitropic root</td>
<td>29,31</td>
</tr>
<tr>
<td>AXR3/IAA7 axr3-3</td>
<td>Short hypocotyl, leaves in dark, upcurled leaves</td>
<td>26,40,42,44,c</td>
</tr>
<tr>
<td>SHY2/IAA3 shy2-1, -2</td>
<td>Short hypocotyl, leaves in dark, upcurled leaves</td>
<td>26,40,42,44,c</td>
</tr>
<tr>
<td>SHY2/IAA3 shy2-3</td>
<td>Short hypocotyl, leaves in dark, upcurled leaves</td>
<td>26,40,42,44,c</td>
</tr>
<tr>
<td>SHY2/IAA3 shy2-6</td>
<td>Short hypocotyl, leaves in dark, upcurled leaves</td>
<td>26,40,42,44,c</td>
</tr>
<tr>
<td>SLR1/IAA14 slr1-1</td>
<td>No lateral roots, few root hairs, agravitropic root and hypocotyl</td>
<td>c</td>
</tr>
<tr>
<td>IAA28 ia28-1</td>
<td>Few lateral roots, decreased shoot apical dominance</td>
<td>6</td>
</tr>
<tr>
<td>MSG2/IAA19 msg2-1</td>
<td>Agravitropic and aphototropic hypocotyl, few lateral roots</td>
<td>d</td>
</tr>
<tr>
<td>MSG2/IAA19 msg2-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSG2/IAA19 msg2-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSG2/IAA19 msg2-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAA12 badenlos</td>
<td>No embryonic root, upcurled leaves</td>
<td>56,a</td>
</tr>
<tr>
<td>IAA18 ia18-1</td>
<td>Long hypocotyl, fused cotyledons, short root, upcurled leaves</td>
<td>f</td>
</tr>
<tr>
<td>SHY1/IAA6 shy1-1</td>
<td>Short hypocotyl, upcurled leaves</td>
<td>42,f</td>
</tr>
</tbody>
</table>

*Only the most dramatic phenotypes are listed. See Refs for further details.

*aAmino acid sequences of the conserved stretch of domain II, and changes caused by the listed mutations. For shy2-1 and ia18-1, the inference that the indicated mutation causes the phenotypes is based on genetic linkage only. The mutation in shy2-1 in particular causes a conservative amino acid change, and therefore requires additional evidence.

*H. Fukaki and M. Tasaka, pers. commun.

*K.T. Yamamoto, pers. commun.

*T. Hamann and G. Jürgens, pers. commun.

*R. Nagpal and J.W. Reed, unpublished.

Do Aux/IAA proteins mediate light responses?

Several results suggest that light can also regulate Aux/IAA protein activity. For example, the red-light photoreceptor phytochrome A (phyA) can interact with two Aux/IAA proteins in the yeast two-hybrid assay40 and oat phyA can phosphorylate IAA1, SHY2/IAA3, IAA9, AXR3/IAA17 and Ps-IAA4 (from pea) in vitro32. PhyA also phosphorylated a fragment of SHY2/IAA3 consisting of domains I and II (Ref. 32), suggesting that phyA recognizes one of these domains. This in vitro activity was not light regulated. However, phytochromes move from the cytoplasm to the nucleus in response to light and phytochrome translocation could regulate phytochrome phosphorylation of (nucleus-localized) Aux/IAA proteins41.

Other data suggest that light might activate Aux/IAA proteins by stabilizing them. The domain II mutations axr2-1, axr3-1, shy2-1 and shy2-2 each cause seedlings to develop leaves when grown in darkness28,42–44. Also consistent with this idea, an antisense construct that decreases function of the Arabidopsis COP9 complex, which is required to prevent de-etiolation in darkness, decreased the turnover rate of a Ps-IAA6::luciferase protein fusion in transgenic plants45. Intriguingly, the COP9 complex removes Rub modification of cullins, the reverse enzymatic activity to that catalyzed by AXR1 and ECR1 (Refs 45,46).

In addition to Aux/IAA gene mutations that affect de-etiolation, msg2 mutations in IAA19 decrease...
phototropism (K. T. Yamamoto, pers. commun.). These results raise the possibility that the photoreceptor NPH1 might regulate phototropism through interactions with Aux/IAA proteins. NPH1 is a light-regulated kinase27, although there is currently no evidence that it can phosphorylate Aux/IAA proteins. Intriguingly, the kinase domain of NPH1 is related to the PINOID kinase, suggesting that this family might have a general role in auxin responses. However, NPH1 associates with the plasma membrane and therefore might not be able to interact directly with MSG2/IAA19 unless one of the proteins can shuttle between the cytoplasm and the nucleus.

If Aux/IAA proteins do mediate light responses then loss-of-function mutations in Aux/IAA genes should decrease light responses. Presumed null mutations in SHY2/IAA3 and AXR2/IAA7 cause transient increases in hypocotyl elongation rates26,28. However, these phenotypes are much subtler than those caused by mutations in photoreceptor genes. Because phyA can phosphorylate any of several different Aux/IAA proteins in vitro, construction and characterization of double or higher-order mutants lacking multiple potentially redundant Aux/IAA proteins might provide more convincing evidence of their importance in light responses.

Why does auxin regulate Aux/IAA gene expression?

The protein ubiquitination machinery and the multiple kinases and photoreceptors already described might regulate Aux/IAA protein stability or some other aspect of Aux/IAA protein activity. There is no evidence that Aux/IAA proteins bind specific DNA sequences and therefore the simplest model to explain how Aux/IAA proteins exert their effects is that they dimerize with ARF proteins and thereby modulate auxin-regulated gene expression. In a transient expression assay in carrot protoplasts, any of several Aux/IAA proteins could inhibit auxin-induced gene expression44, suggesting that Aux/IAA proteins can inhibit the activity of ARFs that contain an activating middle region. Also consistent with this idea, axr2-1 and shy2-2 mutations decrease expression of several auxin-regulated genes3 (Q. Tian and J. W. Reed, unpublished). More complicated scenarios are also possible. For example, Aux/IAA proteins might dimerize with ARFs that do not contain an activation domain, and this interaction might either inhibit a repressing activity or confer some novel activity on these ARFs.

Aux/IAA genes were discovered based on their induction by auxin and some (such as AXR3/IAA17) can promote auxin responses. However, many Aux/IAA proteins actually inhibit auxin responses. These Aux/IAA-mediated negative feedbacks could have at least two purposes for plant development. They might impose a requirement for persistent (or perhaps accelerated) auxin signal input to cause a lasting developmental change. In fact, auxin induces some genes (including several Aux/IAA genes) transiently5. Negative feedback loops might also enable more precise control of output level than would an undamped inductive system, which might overshoot. This would permit a close correlation between auxin level and target gene expression in different cells, and such a graded response would allow auxin to function as a morphogen in tissue patterning. Auxin gradients have indeed been implicated in patterning various tissues, including apical–basal organization in the gynoecium24, phyllotaxy in the shoot apical meristem23, cellular organization of the root meristem48, radial patterning of the vascular cambium29,50 and development of leaf vasculature21,22. Such patterning might also require intercellular feedbacks so that cells in a gradient of auxin concentration could detect their relative position. Altered root meristem patterns in axr2-1 and axr3-1 mutants48 and altered cotyledon phyllotaxy in iaa18-1 mutant plants also suggest that Aux/IAA proteins might regulate patterning. As already discussed, several different ARFs have also been implicated in tissue patterning.

In addition to Aux/IAA genes themselves, the targets of Aux/IAA and ARF regulation might include genes whose products carry out developmental responses to auxin. Most of these remain to be discovered but they might include genes encoding the ethylene biosynthetic enzyme ACC synthase, transcription factors of the H-D-Zip class and other early auxin response genes of the SAUR and GH3 families51. We know little about the functions of most of these genes or the proteins they encode, and studies of these auxin-regulated genes should provide insight into how they might mediate developmental processes induced by auxin. Mutations in one GH3 gene decrease responses to phytochrome A (Ref. 52) and overexpression of another GH3 gene confers a short hypocotyl and auxin-resistant root growth53. These results suggest that GH3 proteins also mediate light responses. It is an open question whether GH3 proteins are part of the same regulatory machinery as ARF and Aux/IAA proteins or whether they act through independent pathways.

What do we still need to know?

Recent progress toward discovering the functions of Aux/IAA genes has come from the fortuitous discovery of gain-of-function mutations in several of these genes. However, we do not know the precise developmental functions of each of these genes and analyses of loss-of-function single and multiple mutants might lead to the next advances in understanding Aux/IAA gene function. We would also like to know the extent to which Aux/IAA proteins function as antennae for the myriad hormonal and environmental signals that influence the basic mechanisms of cell growth, division and differentiation, and the extent to which Aux/IAA proteins can integrate multiple signals. In vivo biochemical studies will be essential to understand
whether (and how) auxin and other signals regulate the activity of the Aux/IAA and/or ARF proteins, and might provide important insight into how auxin is perceived. Finally, global gene expression studies of both gain- and loss-of-function mutants might reveal the regulatory targets of Aux/IAA and ARF proteins, thereby providing a clearer view of how auxin-regulated developmental processes unfold.

References

42. Schwuchowser, C. et al. (2001) Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCF

http://plants.trends.com