AUXIN TRANSPORT
Synthesis of IAA is not always site of action, so must be moved to other locations:
IAA lipid soluble in undissociated form, weakly acidic.
ATP-proton pump pumps out H+, keep pH
gradient.
IAA intercellular transport:
Efflux located at one end of cell. Requires energy. 5-20 mm/h transport (slower than non-polar transport, but more
IAA moves this way (at least basipetally down shoot), i.e. larger transport
capacity)
Polarity
(direction) of auxin transport is independent of orientation of plant
with respect to gravity. (you can’t
fool the plant by turning it upside down)
NAA also travels through
vasculature (tracheids and sieve elements), so this background value must be
subtracted.
![]()
![]()
![]()
IAA
made in shoot moves up epidermal
cells
(gravitropism?)
IN ROOTS: IAA moves in
phloem parenchyma from shoot to root
(lateral root development, root elongation) and also transported from
root tip.
Historical side note of interest on regulation of auxin transport
by ethylene:
1932 Van der Loon -Ethylene modifies seed growth, changes
endogenous auxin distribution
1966-7 Ethylene treatment of intact cotton plants and etiolated
pea seedlings caused inhibition of basipetal auxin transport.
1969 Osborne and Mullins-auxin and ethylene bind to carrier
protein at two different sites. When ethylene binds, either auxin binding or
function of the protein in transporting auxin is inhibited. (allosteric
effect?)
ETHYLENE INHIBITS AUXIN
POLAR TRANSPORT AT SITE OTHER THAN IAA BINDING SITE
1988 Jerry Suttle- reduction of IAA movement in ethylene-treated
tissues is the result of reduced transport capacity rather than reduced
velocity. (at low auxin concentrations, auxin transported/time similar with or
without ethylene treatment.
ethylene may cause decrease in concentration or activity of efflux
carrier.
TDZ (thidiazuron; a cotton defoliant, used to get cotton plants to
drop green leaves prematurely for easier harvest of cotton bolls) increases ethylene synthesis and therefore
inhibits auxin transport. Maybe when ethylene is synthesized during senescence,
ripening or leaf abscission, this ethylene also inhibits auxin transport.
Many proteins needed for auxin
transport
Efflux carrier inhibited by set of compounds called
PHYTOTROPINS
Phytotropins include:
NPA N-1-napthylphthalamic acid
CPD
CMF
Phytotropins inhibit efflux
carrier protein, thus stimulate IAA uptake (more IAA remains in tissue since it
isn't transported out).
NPA:
inhibits
lateral root formation (0.05 uM)
inhibits
gravitropic response (>0.05 uM)
inhibits
root elongation (1 uM)
NPA binding protein (called NBP=NPA Binding
Protein) in cell membrane-
Screen Arabidopsis for
transport mutants that interact with NPB. Selected for mutants that appear
normal even when in presence of phytotropin (ie, roots ELONGATE EVEN IN THE PRESENCE OF NPA). These mutants may be mutants of the genes
for NPA-binding protein or some protein that interacts with NPA-binding
protein, i.e. they are IAA transport mutants.
TIR3 protein up-regulates the
level of active NBP in membrane. (Ruegger
et al. 1997 Plant Cell 9: 745-757)
Labile cytosolic component-??
Efflux carrier- PIN family-of transport
mutants. Encode proteins with 12 membrane spanning domains.
Influx carrier- purified. 44 kD polypeptide
Auxin polar transport is important in
itself for developmental responses.
vasculature
Auxin transport may be important to
establish embryo axis
Somatic globular embryo:
Block auxin action, w/antagonist (PCII) --no growth
Block
auxin transport w/phytotropin—no establishment of axis. Globular embryo keeps growing
Add IAA or
2,4-D ---growth, no morphogenesis
Gnom is critical for
formation of embryo axis
SIGNAL TRANSDUCTION
Receptors-molecules a hormone interacts with directly to initiate its response pathway(s). Each hormone may have multiple types of receptors.
Cellular regulation of a hormonally induced response can occur because of changes in
· level of the hormone
· levels of the receptor
· levels of post-receptor factors (i.e., the receptor is there, but a signal transduction component is missing)
WHAT molecules might bind to auxin??
· IAA receptors involved in signal transduction (could be any type signal transduction molecule)
· metabolic enzymes
· transport proteins
· acceptor or sequestering proteins
· non-protein molecules just “accidentally”
EXPECTED CHARACTERISTICS OF A PLANT HORMONE RECEPTOR:
· high, specific binding constant, saturable binding kinetics, reversible binding
· binding of real hormone shows competition from hormone analogues as expected by in vivo responses to such analogues
· low temperature dependence
· correlations of level of receptor and sensitivity to hormone
· If the hormone receptor is eliminated, response of the plant to the hormone should be eliminated
Difficulties:
· Hormone receptor may loose ability to bind during isolation
· Receptors present at low concentrations, hard to isolate.
· Receptors may not function when over-expressed in heterologous system.
SCATCHARD PLOT- plots data on
binding of hormone to receptor to determine the dissociation constant for the
hormone to the binding molecule. Particularly useful to determine whether one
or more binding molecules are present in the solution being tested. If two
molecules bind hormone are present, the plot is not linear. This shows the importance of obtaining
binding data to a number of concentrations of added hormone. To eliminate
complications due to molecules that do not bind specifically, but rather bind
irreversibly, at each concentration of radiolabeled hormone added, free cold
hormone is added, and the bound-radiolabeled hormone is again quantified. The amount of hormone still bound after this
chase is the amount of irreversible (“non-specific”) binding.
ABP1 (auxin binding protein 1)
First isolated as a
protein that binds auxins according to criteria above. ABP1 is located in ER; about 10% in plasma
membrane (determined from immunohistological evidence, studies of fractionated
membranes, presence of KDEL, an ER
target sequence, in ABP1)
Antibody to purified
ABP1 used to screen expression library, ABP1 cDNA isolated.
Two independent approaches have resulted in isolation of ABP-1 genes
Antibodies to ABP1 block auxin-induced proton efflux in protoplasts.
ABP1 added to protoplasts stimulates proton efflux.
ABP1 knockouts have an embryo-lethal phenotype (embryo doesn’t develop past early globular stage)
57kd rice protein-binds to auxin, and to plasma
membrane proton pump, may initiate acid-induced acid-induced growth via cell
wall expansion.
May be also involved in
auxin perception.
Auxin response- (reviewed in Leyser. Current Opinion in Plant Biology 2001, 4:382–386)
The AUX/IAA genes code for transcription factors that inhibit or induce transcription of a battery of auxin-response genes. Some of the AUX/IAA genes also repress or induce transcription of other AUX/IAA genes or of themselves.
Auxin, by an unknown mechanism, causes the modification of a set of AUX/IAA proteins. This modification targets these proteins for ubiquitination. The proteins are degraded, and the transcription of the battery of auxin-induced genes repressed by them in the absence of auxin can proceed.
Cell elongation and
auxin
One of the better studied specific responses to a plant growth regulator is the induction of cell elongation by auxin, particularly in oat coleptile
Background.
Boysen-Jensen
1936 characterizes elongation response with coleoptiles. the goal to investigate a response using
homogeneous cell population with an easy to monitor physiological response.
Elongation is
simple to detect, but even in the case of the coleoptile,
1) cell types
heterogeneous
By removing
particular layers of cells, one can get
idea of which layers are limiting elongation; in the case of Avena, all cell layer are important.
2) elongation
growth in response to auxin is not uniform down length of coleoptile
3) elongation
is developmental, and response to auxin is moderated by developmental stage of
coleoptile and by environmental factors
**************
Cell
enlargement involves an interaction of factors:
dV/dt+ m Lp (psi a -pie-Y)/m
+Lp
m=wall extensibility
CELL WALL ###
Carbohydrates
including
cellulose---D-glucose polymer
w beta 1-4 linkages. in cotton cellulose is about 3000 glucoses, 500-8000 in
soybean. celluloe strands are arranged
into micelles, which are formed into microfibrils, which are formed into
fibrils,
hemicelluloses---branched
polysacharides (xylose, arabinose,glucose,galactose) with beta 1-4 backbone,
and various other linkages
Proteins
hydroxyproline-rich glycoproteins
such as extensin (structural)-glu
enzymes--glucosidases, hydrolases,
cell wall biosynthetic enzymes
P + turgor pressure (psi a = P-pie)
P= pressure and
is usually positive in cell w turgor
Psia has a
value which is essentially same after elongation so
pie = osmotic (or
solute) potential ie tendency of water to leave cell due to solute in the cell,
relative to pure water, thus is usually negative
in cell (ie there’s solute in cell)
Lp is the Hydraulic
conductivity which is an attribute of the plasma membrane This value tend to be
large, and thus can be ignored.
Y is the wall yield
threshhold; the amount of force required to start the wall expanding
the terms used
for these vary
****picture of
a cell+equations
cell
enlargement could be due to
-increase in m, the extensibility of the wall,
-change in the
water potential (typically this is just the solute potential) outside the cell
-increase in (psi) the osmotic potential within cell
characteristics
of cell elongation induced by auxin
-10-30 min lag
time (typically)
-growth rate
=log (IAA) (for range of IAA concs til
saturated)
-requires energy probably as ATPase
inhibited by ATP synthesis inhibitors
(KCN,DNP, azide)
or ATPase activity inhibitors
(vanadate, DCCD, DES)
-requires cell
turgor , i.e. there must be a force on the cell wall to induce its
extension
-requires
protein synthesis and RNA synthesis
Goes on for 24 h + therefore it is a complex
process, which involves a variety of mechanisms to keep it going
particularly in the long term,
at least some
long term requirements are distinct from the early processes of elongation
following auxin application
The prolonged
elongation of coleptiles involves additional factors., as the cells need to
adjust to their new size with protein synthesis, and also are differentiating
at this time. It also requires the present of solutes, so that the enlarging
cells can maintain their osmotic potential.
(Cleland calls this PGR(prolonged growth
response) vs IGR (immediate growth response))
what kind of mechanism could be proposed to
explain this?
in pea stem
sections, turgor pressure (P) doesnt change after addition of auxin (based on
the measurement of P by micropressure probe.
in contrast,
the indirect measurements of m by
different physical stress tests on the stem (via instron, stress-relaxation, creep
tests, bending assays, turgor relaxation), all show an increase in m associated with auxin-induce
elongation growth
problems in
study of specific changes resulting in increased elasticity.
cell wall bonds that must be broken aren't
well characterized
-cellulases don't promote cell
elongation
-some evidence exists that
hemicelluloses such as xyloglucans break during elongation
-new polysaccharides may be formed
to intercalate into cell wall
The only factors that have been
shown to loosen cell wall are protons.
-decreasing the pH of the cell wall
induces elongation
How does auxin stimulate growth?
Probably via a combination of rapid stimulation of cell wall expansion by relaxation of cell wall structure, and by expression of batteries of new genes required for long-term cell growth.
Rapid stimulation of cell wall expansion: the acid growth theory (Cleland)
-auxin directly or indirectly induces the generation of acidic conditions in the cell wall
-this enables cell walls to elongate by activation of enzymes required for wall extensibility, such as those that break down hemicellulose.
-The change in pH might occur via an ATPase proton pump located in the plasma membrane, such an ATPase is known to be present in PM and is inhibited by vanamycin, also an inhibitor of auxin-induced growth.
This response may be mediated by
ABP1.
Auxin-induced changes in gene expression (Theologis, pea epicotyl; Hagen and Guilfoyle, soybean hypocotyl)
Soybean hypocotyl, in planta, responds to auxin by increase in length and girth; excised basal sections only elongate in response to auxin
pea epicotyl also elongated in response to auxin
Short range responses to auxins include expression of early auxin response genes:
(occur less than 20 min after application of auxin) several mRNAs accumulate specifically, and rapidly in hypocotyls and epicotyls in response to auxin. mRNAs also accumulate following exposure of callus tissue to auxin. Some of these mRNAs are the same and some different than hypocotyl RNAs induced by auxin. (level of other RNAs decrease)
· SAURS accumulate 2.5-5 min after auxin applied to soybean, precede cell elongation response
9-10 kd proteins with regions of high homology to one another
Promoter-deletion-GUS fusions indicate a motif (AXRe) common to many SAUR promoters is needed for auxin-induced expression.
Transcription factors (AGE) may bind to AXRe, repress transcription.
· IAA genes (1-20 in Arabidopsis)
Accumulate in 4-10 min, have half-lives of 6-8 min
Mostly different in sequence but overlapping expression patterns
Nuclear proteins with 4 conserved domains.
Many have been isolated independently in mutant screen for auxin-independent growth.
Domains III and IV involved in inter-protein binding. These domains are homologous to ARF domains II and IV.
Longer range response (2-48h):
de novo synthesis of new mRNAs and proteins required for cell enlargement (Cell wall synthesis proteins, proton pump proteins, etc).
Any protein that is required at a particular concentration will need to increase associated with an increase in cell volume. Thus many proteins that show an increase do not play a causal role in cell enlargement (such as proteins needed for energy)
Auxin response mutants:
Many are in ubiquitination
pathway which rapidly degrades proteins that repress early auxin
response genes.
Includes genes selected as both auxin response mutants and
auxin transport mutants!
axr1, rub, eir1, ecr1, tir1, ask, ATcul1.
Includes genes that are auxin early response genes (IAA
genes) or that regulate them.
AGE2
represses expression of a subset of early auxin response genes
Other genes identified in
screens for various mutants that are altered in auxin response.
Monopteros: expressed in embryos, plant. Needed for normal polarization of embryo,
vascular development, floral development,
needed for induction of early genes that mediate auxin transport.
N03 increases activity of a
MADs box protein that increases activity of AXR4. Auxin also
increases activity of AXR4. AXR4 is important for elongation of
lateral root apices.