RANA BISWAS

Personal data

Office Address: - Microelectronics Research Center and Ames Laboratory, A506 Physics Addition, Iowa State University, Ames IA 50011

Phone:  (515)294-6987, Fax (515)294-0689

e-mail: biswasr@ameslab.gov

Home pages: http://cyclops.ameslab.gov/cmp/Personnel/Biswas_Rana.html

 http://www.public.iastate.edu/~biswasr/VITA2.htm

Home: 1159 Oklahoma Drive, Ames, IA 50014 (515)292-3705

Citizenship: USA

 

PROFESSIONAL HISTORY

1987-present       Iowa State University.

                  1998-present: Scientist, Ames Laboratory & Microelectronics Res. Ctr

                  1989-1998: Associate Scientist, Ames Lab & Microelectronics Research Ctr

                  1993-present: Adjunct Associate Professor of Physics

1986-1988      Exxon Research & Engineering Co., Consultant

1984-1986       AT&T Bell Laboratories, Murray Hill, NJ; Postdoctoral Member                                         of Technical Staff, Solid State Electronics Laboratory

1983-84      Xerox Palo Alto Research Center; Consultant

1980-84      Research Assistant, Laboratory of Atomic and Solid State Physics,                                          Cornell University, Ithaca, NY

1978-80      Teaching Assistant, Dept. of Physics, Cornell University

 

 

EDUCATIONAL DEGREES

1984          Ph.D. in Physics, Cornell University; (Specialization: Solid State Physics)

1982          M. S., Physics, Cornell University;

1978          M.Sc., Physics, Indian Institute of Technology, Bombay

1976          B.Sc., Bombay University;

                       

 

RESEARCH INTERESTS

1.      Photonics. Design and simulation of photonic band gap crystals. Electromagnetic simulations and wave propagation in photonic crystals. Development of novel electromagnetic applications in the microwave, millimeter-wave, infrared and optical frequencies utilizing photonic band gap structures (theory and experiment). Nanostructured materials and ceramics for photonics applications.

2.      Electromagnetics. Directional antennas and receivers. Finite-difference-time-domain simulations. Design of infrared sources and emitters using periodic systems. Joint applications development with industrial collaborators.

3.      Semiconductor materials. Simulation of the structure, metastability, light-induced defects and hydrogen motion in solar cell materials and devices. Amorphous silicon and microcrystalline materials. Molecular dynamics simulations at the nanoscale.

4.      Nanotechnology.  Modeling matter and processes at the nanoscale with atomistic-level simulations.  Use of parallel-computing methodologies. Chemical-mechanical planarization. Engineering novel devices and nanotechnology applications.

 

Ph.D. advisors: V. Ambegaokar (Cornell), R. M. Martin (Illinois)

Post-Doctoral advisor: D. R. Hamann (Lucent Bell Labs)

 

HONORS

Co-organizer, Symposium A-  Materials Research Society Spring Meeting 2004-2005; Nanocrystalline and Heterogeneous Silicon

 

SIGNIFICANT SCIENTIFIC ACTIVITIES

Member IEEE, American Physical Society, Materials Research Society

Reviewer for journals: Physical Review Letters, Physical Review B, Journal of Non-Crystalline Solids, J. Applied Physics, Applied Physics Letters, Physics Status Solidi,

IEEE Transactions-Microwave Theory & Techniques.

Reviewer:  Proposals to the National Science Foundation, and Department of Energy

 

 

NATIONAL RESEARCH TEAM ACTIVITIES

Member, NREL/EPRI Metastability and mid-band gap solar cell team 1995-present

 

Member DOE, Synthesis and Processing of Advanced Materials, Photovoltaics focus area, research team on silicon materials. 1995.

 

Member, EPRI middle band gap solar cell team 1992-1995

 

SUMMARY OF ACCOMPLISHMENTS

Refereed publications

116

Journal publications

86

Refereed conference proceedings

30

Papers in review

1

Book chapters (included in publications)

4

Patents awarded

2

Patent applications in review

2

Presently funded grants/programs in 2001

5

Invited talks

28

Presentations at research workshops

24

Session chair at international conferences

3

 


TEACHING EXPERIENCE

 

Iowa State University

 

Cornell University

Instructed Recitation sections and laboratory classes, and graded:

 

 

GRADUATE STUDENTS SUPERVISED

1. I. El-Kady, pursuing Ph.D. Physics at ISU. Co-principal Ph.D. Supervisor

1. G. Subramania, Ph.D. Physics/EE at ISU. Co-principal Ph.D. Supervisor

2. S. D. Cheng M.S. EE 1995, Ph.D. (98) at ISU. Co-principal M. S. Supervisor. Thesis: Antennas on Photonic Band Gap Crystals

3. I. Kwon, Ph.D. Physics ISU (1993). Principal Ph.D supervisor. Joined as a Research Associate, Los Alamos Natl. Lab

4. A. Bouchard, B.S. Physics 1988. Supervised early graduate work and B.S. thesis. Her B.S. thesis was one of 6 finalists for 1988 Apker award of the American Physical Society. After Ph.D. in 1993 is Research Scientist, Sandia Natl. Labs.

5.  Grady Daub, Physics (Summer 2000).

 

MEMBERSHIP OF PH.D. STUDENT COMMITEES

1. G. Subramania (Physics) (Ph.D. 2000) (Co-principal Ph.D. supervisor)

2. S. D. Cheng (EE) (Ph.D. 1998, M.S. 1995) (Co-principal M. S. supervisor)

3. S. Gupta (EE) (Ph. D. 1998)

4.  J. Kavanaugh (EE) (Ph.D. 2000)

5.  I. El-Kady (Physics) (Ph.D. 2002). (Co-principal Ph.D. supervisor)

6.  P. Sharma (EE) (M.S. expected in 2003)

 

POSTDOCTORAL AND VISITING SCIENTISTS SUPERVISED

(mostly in semiconductor area; all were supported by my external grants)

1. Young-Hee Lee (visiting scientist, S. Korea), 1989-1990

2. Qiming Li (1993-1996); Joined Schlumberger-Anadrill, Houston, TX 1996.

3. Bicai Pan (Univ of Science and Technology of China, Hefei, China);1997; 2000-present

4. Y.-P. Li (Univ of Science and Technology of China, Hefei, China); 1997-98

5. Y. Ye (Wuhan University); 2000-present.

 

UNDERGRADUATE STUDENTS SUPERVISED

Assisted in research projects and simulations; Were supported by my external grants.

Yoke Yoon (1995-96), W. Hermanto (98-99), C. Boeckma (98-99), Hyung-Woong Lee (1999), Z. McDanel (2000-02), Seng-Min Tang (2002)


 ADDITIONAL EXPERTISE IN COMPUTATIONS

o        Propagation of electromagnetic waves in periodic media

o        Time-dependent coupled differential equations with rate equations

o        Molecular dynamics package with atomistic potentials

 

RECENT INDUSTRIAL COLLABORATIONS AND OUTREACH

 

PRESENT GROUP MEMBERS

 

Collaborators from Ames Laboratory, Sandia National Laboratories, Ion-Optics, and Agilent Technologies.


 

EXTERNAL FUNDING GRANTS

Present Funding (2002-2003)

 

1.  Ion-Optics, Waltham, MA, SBIR subcontract. SBIR from NSF & NIST.2000-2003 $70K, (PI). Design of infrared emitters with photonic band gaps.  (20K: 2000; 50K: 2002-2003).

 

2.  Dept. of Energy/NREL. Photovoltaic technologies beyond the horizon. $160K Nanoscale design of thin film heterogenous silicon solar cell materials (2001-2004).

 

3.   American Chemical Society, Petroleum Research Fund, Bonding in nanocrystalline and heterogenous semiconductors, (Principal Investigator) $60K, 4/2000-8/2003.

 

4. Department Of Energy, Photonic band gap materials. 1995-present. Co-PI with G. Tuttle, E. Ozbay, C.M. Soukoulis, K. Constant, K.-M. Ho (Project Coordinator). $450K/year.

 

5.  Department of Energy, Nanostructures for photonics and electronics thrust area of the DP/BES Nanoscience Network, $40K. PI.’s R. Biswas, K.M. Ho (Ames Lab). Project coordinator S.-Y. Lin (Sandia). 2001-present.

 

6. National Science Foundation, Materials Research Instrumentation Grant. $305K (2001-2004). Deep Reactive Ion Etching. With V. Dalal (PI) S. Mallapragada, M. Porter, V. Tsukruk.

 

Past Funding

 

6. Electric Power Research Institute (EPRI): Deuterium substitution for improved stability of amorphous silicon,  funded 1997-1999. $60K. Principal investigator.

 

7. Electric Power Research Institute (EPRI): Theoretical calculations relevant to  the  Staebler-Wronski effect in a-Si:H, funded 1989-1992: $147K, 1994-1996: $44K. Principal investigator.

 

8. Department of Energy, Center for Synthesis and Processing of Advanced Materials -Photovoltaics thrust,  PI $50K 1996-2001. ($10K/year).

 

9. Iowa Energy Center: Computer-based optimization of amorphous silicon materials for solar cells, funded 1993-1997. $121K. Principal investigator.

 

10. Honeywell, Plymouth, MN. Design simulations of Photonic crystals. 9/2000-12/2000. $5K. with C. M. Soukoulis.

 

11. Iowa Space Grant Consortium, Photonic band gaps in space, 1998-99 $ 25K, Co-PI with M. Sigalas, G. Tuttle, K.M. Ho. A. Marston, P. Appleton (PI)

 

12. Department of Commerce/Center for Advanced Technology Development (CATD) Iowa State University, Development of millimeter wave components using novel photonic band gap materials funded 1993-1998. $436K. Co-PI with K.M. Ho, G. Tuttle and E. Ozbay.

 

13. IPRT special projects, “Antennas for photonic band gap crystals”, Jan-June 1993, $34K, Principal Investigator.(CoPI’s were K.M. Ho and G. Tuttle).

 

14. National Science Foundation “Theoretical Studies of Semiconductor Surfaces and Interfaces”, 1989-1992, $120K. (Co-PI with K.M. Ho and C.T. Chan).

 

 

 

 

 

BREAKDOWN OF PUBLICATIONS BY AREA

 

 

Journal

Conference Proceedings

Total

Electromagnetics/Photonics

42

 9

49

Microelectronics/Semiconductors

42

21

63

Parallel Computing

 1

 

 1

Antennas (included in electromagnetics)

 9

 2

11

 

 


 

 

Publication List: Refereed Journal Papers:

 

1.      J. Fleming, S. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All metallic absolute photonic band gap three-dimensional photonic crystals for energy applications”, Nature 417, 52 - 55 (02 May 2002).

 

2.      Y. Ye, R. Biswas, J. Morris, A. Bastawaros, and A. Chandra, Simulation of Nanoscale machining of copper with molecular dynamics”, Nanotechnology (2002).

 

3.      M. Pralle, E.A. Johnson, I. Puscascu, A. C. Greenwald, J. T. Daly, B. Kinkade, M. McNeal, N. Moelders, T. George and D. S. Choi, I. El-Kady, R. Biswas  “Tunable narrow band emitters in the infrared”, Applied Physics Letters 81, 4685  (Dec-2002).

 

4.      R. Biswas and B. C. Pan, “Mechanisms for metastability in amorphous silicon”, Book chapter, Solar Energy Materials (2002) in press.

 

5.       R. Biswas, M. Sigalas, K.M. Ho, and S. Lin, “Three-dimensional photonic band gaps in modified simple cubic lattices”, Phys. Rev. B. 65 205121 (2002); Virtual Journal of Nanoscale Science and Technology 5, issue 22, 3 June, 2002.

 

6.      Y. Ye, R. Biswas, A. Bastawaros, and A. Chandra, “Simulation of Chemical Mechanical Planarization of copper with molecular dynamics”, Applied Physics Letters 81, 1875 (2002). (September 2).

 

7.      R. Biswas, B.C. Pan, and Y. Ye, “Metastability of amorphous silicon from silicon network rebonding”, Phys. Rev. Letters 88, 205502 (2002).

 

8.      R. Biswas, B.C. Pan, “Defect kinetics in new model of metastability in a-Si:H”, Journal of Non-Crystalline Solids, 299-302, 507 (2002).

 

9.      R. Biswas, E. Ozbay, B. Temelkuran, M. Bayindir, M. M. Sigalas , and K.-M. Ho, “Exceptionally directional sources with photonic band gap crystals”, Proceedings NATO Advanced Study Institute on Photonic Crystals and Light localization in the 21st century, ed. C. M. Soukoulis, pages 321-328  (2001). (Plenum Press)

 

10.  R. Biswas, E. Ozbay, B. Temelkuran, M. Bayindir, M.M. Sigalas, and K-M. Ho, “Exceptionally directional sources with photonic band gap crystals”, J. Optical Society of America B. 18, 1684 (November-2001).

 

11.  G. Subramania, R. Biswas, K. Constant, M. .M. Sigalas, K.-M. Ho, “Structural characterization of thin film photonic crystals”,  Phys. Rev. B. 63, 235111 (2001).

 

12.  M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides”,  Phys. Rev. B 63, 081107(R) (2001).

 

13.  S. Lin, P. Fleming, M.M. Sigalas, R. Biswas, and K. -M. Ho, “A complete three-dimensional photonic band gap in a simple cubic system”, J. of the Optical Society of America B. 18, 32 (2001).

 

14.  G. Subramania, K. Constant, R. Biswas, M.M. Sigalas, K.-M. Ho, “Inverse face-centered cubic thin film photonic crystals”,  Advanced Materials 13,  443-446 (2001).

 

15.   “Photonic Crystals”, M. M. Sigalas, K. M. Ho, R. Biswas, C. M. Soukoulis, in Optics of Nano Structured materials, p 1-38, Edited by V. A. Markel and T. F. George, (John Wiley and Sons, New York,  2000). Book Chapter

 

16.  I. El-Kady, M.M. Sigalas, R. Biswas, C.M. Soukoulis, K.M. Ho, “Photonic band gaps in three-dimensional metallic lattices”, Phys. Rev. B 62, 15299 (2000).

 

17.  A. Zakhidov, R. H. Baughman, I. I. Khayrullin, I. Udod, M. Kozlov, N. Eradat, V. Vardeny, M. Sigalas, and R. Biswas, “Three-dimensionally periodic conductive nanostructures: network vs cermet topologies for metallic photonic band gaps”, Synthetic Metals 116, 419-426 (2001).

 

18.  G. Subramania, K. Constant, R. Biswas, M.M. Sigalas, K.-M. Ho, “Synthesis of thin film photonic crystals”, Synthetic Metals 116, 445-448 (2001).

 

19.  R. Biswas, M.M. Sigalas, G. Subramania, C.M. Soukoulis, and K.M. Ho, “Photonic band gaps of porous solids, Physical Review B 61, 4549 (2000).

 

20.  R.Biswas, Y.P. Li and B.C. Pan, “Isotopic effect between hydrogen and deuterium  emission in silicon”, J. Non-Crystalline Solids 266-269, 176 (2000).

 

21.  R. Biswas and Y.-P. Li, “Metastability in amorphous silicon from hydrogen flips”, J. Non-Crystalline Solids 266-269, 401 (2000).

 

22.  B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, G. Tuttle, M.M. Sigalas, and K-M. Ho, “Photonic crystal based resonant antenna with a very high directivity”, Journal of  Applied Physics 87, 603 (January-2000).

 

23.  I. El-Kady, M.M. Sigalas, R. Biswas, K.-M. Ho, “Waveguides in two-dimensional photonic bandgap materials”, J. of Lightwave Technology 17, 2042 (1999).

 

24.  G. Subramania, K. Constant, R. Biswas, M.M. Sigalas, K.-M. Ho, “Optical Photonic crystals fabricated from colloidal systems”, Journal of Lightwave Technology 17, 1970 (1999). (IEEE/OSA Publications, Nov-99).

 

25.  M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho "The effects of disorder on Photonic Band Gaps", Phys. Rev. B 59, 12767 (1999).

 

26.  M.M. Sigalas, R. Biswas, K.-M. Ho, C.M. Soukoulis, D. Turner, B. Vasiliu, S.C. Kothari, and Shawn Lin, “Waveguide bends in three-dimensional layer-by-layer photonic band gap materials”, Microwave and Opt. Technology Lett. 23, 57 (1999).

 

27.  M.M. Sigalas, R. Biswas, K.-M. Ho, C.M. Soukoulis, and D.D. Crouch, “Waveguides in three-dimensional metallic photonic band gap materials”, Phys. Rev. B. 60, 4426 (1999).

 

28.  S. Lin, J. Fleming, M.M. Sigalas, R. Biswas, K.-M. Ho, “ Photonic band gap microcavity in three dimensions”, Phys. Rev. B. 59, 15579 (1999) Rapid Communications.

 

29.  G. Subramania, K. Constant, R. Biswas, M.M. Sigalas, K.-M. Ho, “Optical Photonic crystals fabricated from colloidal systems”, Appl. Phys. Lett. 74, 3933  (1999).[1]

 

30.  R. Biswas, and Y.P. Li, “H-flip model of light induced changes of amorphous silicon”, Phys. Rev. Letters 82, 2512 (1999).

 

31.  M.M. Sigalas, R. Biswas, G. Tuttle, C.M. Soukoulis, and K.M. Ho, “ Photonic Crystals”, chapter in Wiley Encyclopaedia of Electrical and Electronic Engineering Volume 16, 345  (John Wiley, 1999). Book Chapter

 

32.  M. Sigalas, R. Biswas, K.-M. Ho, W. Leung, G. Tuttle, and D. Crouch, “Effect of photonic band gap crystals on dipole antennas”, Electromagnetics 19, no. 3, 291 (1999). (special issue, invited paper)

 

33.   “M.M. Sigalas, R. Biswas, K.M. Ho, and C. M. Soukoulis”, Theoretical investigation of off-plane propagation of electromagnetic waves in two-dimensional photonic crystals, Phys. Rev. B  58, 6791 (1998).

 

34.  W. Leung, G, Tuttle, M.M. Sigalas, R. Biswas, C.M. Soukoulis, and K.M. Ho, “High-Q defects in metallic photonic band gap crystals”, Journal of Applied Physics 84,  4091 (1998).

 

35.  R. Biswas, Y.-P. Li, and B.C. Pan, “Enhanced stability of deuterium in silicon,” Applied Physics Letters. 72, 3500 (1998).

 

36.  S. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith (Sandia), R. Biswas, K.-M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, and J. Bur, “A Three-dimensional photonic crystal operating at infrared wavelengths”, letters to Nature 394, 251 (1998) (7-16-98).

 

37.  M.M. Sigalas, C.M. Soukoulis, R. Biswas, and K.M. Ho, “Theoretical investigation of Defects in Photonic band gap crystals in the presence of dielectric losses”, Phys. Rev. B. 57, 3815 (1998).

 

38.  R. Biswas, M.M. Sigalas, G. Subramania, and K.M. Ho,“Photonic band gaps in colloidal systems”, Phys. Rev. B 57, 3701 (1998).

 

39.  R. Biswas and B.C. Pan, “Microscopic nature of Staebler-Wronski defect formation in amophous silicon”, Applied Physics Letters. 72, 371 (1998).

 

40.  R. Biswas, Q. Li, B.C. Pan, Y. Yoon, “Mechanism for hydrogen diffusion in amorphous silicon”, Phys. Rev. B. 57, 2253 (1998).

 

41.  R. Biswas, M.M. Sigalas, C.M. Soukoulis, and K.M. Ho,“Photonic band structure”, Chapter IV, page 143, in Topics in Computational Materials Science, e.d. C. Y. Fong (World Scientific, Singapore and River Edge N.J., 1998). Book chapter

 

42.  M.M. Sigalas, C.M. Soukoulis, R. Biswas, and K.M. Ho, “Effect of magnetic permeability on photonic band gaps”, Phys.  Rev. B 56, 959 (1997).

 

43.  R. Biswas, Q. Li, Y. Yoon, and H. M. Branz, “Dangling bond levels and structure relaxation in amorphous hydrogenated silicon”, Phys.  Rev. B 56, 9197 (1997).

 

44.  W. Leung, R. Biswas, S.D. Cheng, M. M. Sigalas,  S. McCalmont, G. Tuttle, and K.M. Ho, “Slot Antennas on photonic band gap crystals”, IEEE- Transactions on Antennas and Propagation, 45, 1569 (1997). (Letter section).

 

45.  M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, K.-M. Ho, “Dipole antennas on Photonic band gap crystals- experiment and simulation”, Microwave and Optical Technology Letters, 15, 153 (1997).

 

46.  M. M. Sigalas, R. Biswas, and K.- M. Ho, “Theoretical Study of dipole antennas on photonic band gap materials”, Microwave and Optical Technology Letters 13, 205 (1996).

 

47.  Q. Li and R. Biswas, “Bond-length disorder and metastability in a-Si:H”, Appl. Phys. Lett. 68, 2261 (1996).

 

48.  R. Biswas, S.D. Cheng, E. Ozbay, S. McCalmont, W. Leung, G. Tuttle, and K.M. Ho, “Optimized Dipole antennas on photonic band gap crystals”, NATO Advanced Study Institute 315, p. 377  (Kluwer, 1995).

 

49.  R. Biswas, C.T. Chan, M. Sigalas, C.M. Soukoulis, and K.M. Ho, “Photonic Band Gap Materials”,  NATO Advanced Study Institute 315, p. 23 (Kluwer, 1995).

 

50.  S.D. Cheng, R. Biswas, E. Ozbay, S. McCalmont, G. Tuttle, and K.M. Ho, “Optimized Dipole antennas on photonic band gap crystals”, Appl. Phys. Lett. 67, 3399, (1995).

 

51.  E. Ozbay, G. Tuttle, M. Sigalas, R. Biswas, S. McCalmont, C.M. Soukoulis, and K.M. Ho, “Laser Micromachined millimeter wave photonic band gap structures”, Appl. Phys. Lett. 67, 1969 (1995).

 

52.  Q. Li and R. Biswas, “Hydrogen Rebonding and defect formation in a-Si:H”, Phys. Rev B 52, 10705 (1995).

 

53.  R. Biswas, I. Kwon,  C.M. Soukoulis, and Q. Li, “Simulations of defect formation processes in hydrogenated amorphous silicon”, Solid State Phenomena, 44-46, 723 (1995).

 

54.  R. Biswas, K. Roos, and M. Tringides, "Low Temperature growth on Si(111) substrates," Phys. Rev. B 50, 10932 (1994).

 

55.  E. Ozbay, E. Michel, G. Tuttle, R. Biswas, K.M. Ho, J. Bostak, and D.M. Bloom, "Terahertz spectroscopy of three-dimensional photonic band gap crystals," Optics Letters 19, 1155  (1994).

 

56.  E. Ozbay, G. Tuttle, R. Biswas, K.M. Ho, J. Bostak, and D.M. Bloom, "Double-Etch Geometry for millimeter-wave photonic band gap crystals," Appl. Phys. Lett. 65, 1617 (1994).

 

57.  Q. Li, and R. Biswas, "Transferable tight-binding models of Si-H systems," Phys. Rev. B. 50, 18090 (1994).

 

58.  K.M. Ho, C.T. Chan, C.M. Soukoulis, R. Biswas and M. Sigalas, "Photonic Band Gaps in Three dimensions: new layer-by-layer periodic structures" Solid State Comm. 89, 413 (1994).

 

59.  E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C.T. Chan, C.M. Soukoulis, K.M. Ho, "Measurement of Three-dimensional photonic band gap in new crystal structure made of dielectric rods",  Phys. Rev. B 50, 1945 (1994).

 

60.  E. Ozbay, G. Tuttle, R. Biswas, M. Sigalas, and K.M. Ho, "Micromachined millimeter wave photonic band gap crystals," Appl. Phys. Lett.  64, 2059 (1994).

 

61.  I. Kwon, R. Biswas, C. Z. Wang, C. M. Soukoulis, and K. M. Ho, "Transferable tight-binding models for silicon,"  Phys. Rev. B. 49, 7243  (1994).

 

62.  A. D. Zdetsis, R. Biswas, " A parallel molecular dynamics strategy for PVM," NATO Adv. Study Institute on Statics and Dynamics of Alloy Phase Transformations  ed. P. Turchi and A. Gonis (Plenum 1993).

 

63.  R. Biswas, "Simulations of H deposition processes in a-Si:H film growth," J. of Appl. Physics 73, 3295 (1993).

 

64.  I. Kwon, R. Biswas, and C. M. Soukoulis, "Molecular dynamics simulations of the Staebler-Wronski effect in hydrogenated amorphous silicon," Phys. Rev. B. 45, 3332 (1992).

 

65.  R. Biswas, I. Kwon, and C. M. Soukoulis, "Mechanism of the Staebler-Wronski effect in a-Si:H," Phys. Rev. B 44, 3403 (1991) (Rapid Communications).

 

66.  Y. H. Lee, R. Biswas, C. M. Soukoulis, C. Z. Wang, C. T. Chan, and K.M. Ho, "Molecular dynamics simulation of the thermal conductivity of amorphous silicon," Phys. Rev. B 43, 6573 (1991). 

 

67.  I. Kwon, R. Biswas, and C. M. Soukoulis, "Molecular dynamics simulations of the stability of amorphous silicon," Phys. Rev. B 43, 1859 (1991) (Rapid Communications).

 

68.  R. Biswas, C. Z. Wang, C. T. Chan, K. M. Ho and C. M. Soukoulis, “Electronic structure of dangling and floating bonds in amorphous silicon," Electrochemical Society Journal 91-4, 463 (1990).

 

69.  C. Soukoulis and R. Biswas, "A theoretical investigation on structural, vibrational and electronic properties of amorphous silicon," in 2nd International Workshop on Non-Crystalline Solids, ed. J. Colmenero (World Sci. 1990).

 

70.  I. Kwon, R. Biswas, G. S. Grest, and C. M. Soukoulis, "Molecular dynamics simulation of amorphous and epitaxial Si growth on Si (111)," Phys. Rev. B. 41, 3678 (1990).

 

71.  R. Biswas, C. Z. Wang, C. T. Chan, K. M. Ho and C. M. Soukoulis, "Electronic structure of dangling and floating bonds in amorphous silicon," Phys. Rev. Lett. 63, 1491 (1989).

 

72.  R. Biswas, I. Kwon, A. M. Bouchard, C. M. Soukoulis, and G. S. Grest, "Intense Small-Wavevector Scattering from Voids in Amorphous Silicon - A Theoretical Simulation," Phys. Rev. B 39, 5101 (1989).

 

73.  W. A. Kamitakahara, R. Biswas, A. M. Bouchard, and F. Gompf, "Dynamics of Amorphous Semiconductors: Experiment and Computer Simulation," Physica B 156-157,  213 (1989).

 

74.  A. M. Bouchard, R. Biswas, W. A. Kamitakahara, C. M. Soukoulis, and G.S. Grest, "Vibrational properties of amorphous silicon-germanium alloys and superlattices," Phys. Rev. B 38, 10499 (1988).

 

75.  R. Biswas, G. S. Grest and C. M. Soukoulis, "Molecular dynamics  simulation of cluster and atom deposition on silicon (111)," Phys. Rev. B 38, 8154 (1988).

 

76.  R. Biswas, A. M. Bouchard, W. A. Kamitakahara, C. M. Soukoulis, and G. S. Grest, "Vibrational localization in amorphous silicon,"  Phys. Rev. Lett. 60, 2280 (1988).

 

77.  R. Biswas, G. S. Grest, and C. M. Soukoulis, "Generation of amorphous  silicon structures using molecular dynamics simulations," Phys. Rev. B 36, 7437 (1987).

 

78.  R. Biswas and D. R. Hamann, "New classical models for silicon structural energies," Phys. Rev. B 36, 6434 (1987)

 

79.  R. Biswas, R. M. Martin, R. J. Needs and O. H. Nielsen, "Stability and electronic properties of complex structures of silicon and carbon under pressure - density functional calculations," Phys. Rev. B 35, 9559 (1987).

 

80.  R. Biswas and D. R. Hamann, "Bonding geometry and H vibrations of W(001)," Phys. Rev. Lett. 56, 2291 (1986).

 

81.  R. Biswas and D. R. Hamann, "Simulated annealing of silicon clusters in Langevin molecular dynamics," Phys. Rev. B 34, 895 (1986).

 

82.  R. Biswas and D. R. Hamann,  "Interatomic potentials for silicon structural energies," Phys. Rev. Lett. 55, 2001 (1985).

 

83.  R. Biswas, R. M. Martin, R. J. Needs, and O. H. Nielsen, "Complex  tetrahedral structures of silicon and carbon under pressure," Phys. Rev. B 30, 3210 (1984).

 

84.  R. Biswas and M. Kertesz, "Electronic structure and metallization of silicon," Phys. Rev. B 29, 1791 (1984).

 

85.  V. Ambegaokar and R. Biswas, "Phonon instabilities in electronically excited semiconductors," Phys. Rev. Lett. 50, 285 (1983) Comment.

 

86.  R. Biswas and V. Ambegaokar, "Phonon spectrum of a model of electronically excited silicon," Phys. Rev. B 26, 1980 (1982).

 

Papers in review

 

1)      B.C. Pan and R. Biswas, “Atomisitc nature of nano-crystalline silicon”, submitted to Phys. Rev. Letters.

2)      S. Lin, J. Fleming, I. El-Kady, Z.-Y. Li, R. Biswas, K. M. Ho, “Metallic photonic band gap crystals”, submitted to J. Optical Society America B.


Refereed Papers in Conference Proceedings:

 

1)      I. Puscascu, M. Pralle, Mark P. McNeal, Nicholas Moelders, L. List, W. Ho, A. C. Greenwald, J. T. Daly, E. A. Johnson, I. El-Kady, R. Biswas, Frequency selective surfaces for MEMS Gas Sensor, Proceedings MRS 722, 395 (2002).

 

2)      R. Biswas, B.C. Pan, “Nature of Charged metastable defects in network rebonding model”, Proceedings Materials Research Society 715, 429 (2002).

 

3)      Y. Ye, R. Biswas, J. Morris, A. Bastawaros, and A. Chandra, Simulation of Nanoscale polishing of copper with molecular dynamics”, Proceedings, Materials Research Society, 732E, I4.8 (2002).

 

4)      R. Biswas, E. Ozbay, B. Temelkuran, M. Bayindir,  M.M. Sigalas, and K-M. Ho, “Antenna Applications of Photonic band gap crystals”, Invited paper T23.24, Proceedings, URSI-2001 Symposium on Electromagnetic Theory, page 341. 

 

5)      R. Biswas, B.C. Pan and Y. Ye, “Network rebonding model for metastability in amorphous silicon”, Proceedings Materials Research Society 664, A14.1 (2001).

 

6)      R. Biswas, Y.-P. Li, and B.C. Pan, “Mechanisms of metastability in hydrogenated amorphous silicon”, Proceedings MRS 609,  A3.5 (2000). Invited paper

 

7)       A. C. Greenwald, J. T. Daly, E. A. Johnson, B. Kinkade, M. McNeal, M. Pralle, and N. Moelders, Ion Optics, Inc, T. George and D. S. Choi, JPL, R. Biswas and I. El-Kady. “Narrow band emission from lithographically defined photonic bandgap structures in silicon: matching theory and experiment”, MRS Proceedings 637, E2.6.1 (2000). (Microphotonics- Materials, Physics  and Applications).

 

8)      M. Bayindir, B. Temelkuran, E. Ozbay, R. Biswas, G. Tuttle, M.M. Sigalas, and K-M. Ho,  Photonic crystal based resonant antenna with a very high directivity, Proceedings, Antennas and Propagation, Davis, Switzerland (April 2000).

 

9)      M. Bayindir, B. Temelkuran, E. Ozbay, R. Biswas, G. Tuttle, M.M. Sigalas, and K-M. Ho, Microwave Applications of Photonic crystals, Proceedings European Microwave Conference, page 520, (2000).

 

10)  G. Subramania, K. Constant, R. Biswas, M. M. Sigalas, and K.-M. Ho, “Optical Photonic Crystals Synthesized from Nanocrystalline Titania”, Proceedings of Fine, Ultrafine and Nano Powders 2000 .

 

11)  R. Biswas, and Y.P. Li, “H-flip model for metastable structural changes of amorphous silicon”, Materials Research Society Symp. Proc. 557, 371 (1999).

 

12)  R. Biswas and B.C. Pan, “Microscopic nature of light-induced defects”, MRS Symposium 507, 607 (1998).

 

13)  M. Sigalas, R. Biswas, K.-M. Ho, C.M. Soukoulis and D. Crouch, “Waveguides in photonic band gap crystals”, submitted to Proceedings 14th annual review of progress in Applied Computational Electromagnetics  p. 144 (1998).

 

14)  R. Biswas, Q. Li, B.C. Pan, and Y. Yoon, “Reactivity and migration of H in a-Si:H”, Materials Research Society Symposium Proceedings 467, 135 (1997).

 

15)  M. Sigalas, R. Biswas, K.-M. Ho, W. Leung, G. Tuttle, and D. Crouch, “Applications of photonic band gap materials” Proceedings 12th annual review of progress in Applied Computational Electromagnetics  p. 412 (1997).

 

16)  R. Biswas and Q. Li, “Local structural changes around charged dangling bonds”, Materials Research Society Proceedings 420, 673 (1996).

 

17)  Q. Li and R. Biswas, “Metastable defects in a-Si:H from bond-length disorder”, Materials Research Society Proceedings 420, 623 (1996).

 

18)  M. M. Sigalas, R. Biswas, C. T. Chan, K.M. Ho and C.M. Soukoulis, “Theoretical studies of photonic band gap materials”, Proceedings 12th annual review of progress in Applied Computational Electromagnetics  p. 436 (1996).

 

19)  Q. Li and R. Biswas, “Metastable defect formation by hydrogen relocation and rebonding”, Materials Research Society Proceedings 377, 407 (1995).

 

20)  Q. Li, R. Biswas and C.M. Soukoulis, "New Approaches to molecular dynamics simulations of a-Si:H," Mater. Res. Soc. Symp. Proc. 336, 219 (1994).

 

21)  R. Biswas, K. Roos, and M. Tringides, " Low Temperature Growth Mechanisms for RHEED oscillations," Mater. Res. Soc. Symp. Proc. 312, 249 (1993).

 

22)  I. Kwon, R. Biswas, " Structure and stability of microvoids in a-Si:H" Mater. Res. Soc. Symp. Proc. 297,  225 (1993).

 

23)  C. R. Wronski, N. Maley, R. Biswas et al, "Findings and plans of the stable Materials Advisory Research Team," Proceedings 11th European Photovoltaic solar energy conference (1992) pages 72-75.

 

24)  R. Biswas, I. Kwon, and C. M. Soukoulis, "Assessment of weak Si-Si bond breaking mechanisms of the Staebler-Wronski effect," Mater. Res. Soc. Symp. Proceedings 219, 99 (1991).

 

25)  R. Biswas and I. Kwon, "New Interpretations of the Staebler-Wronski effect in a- Si:H with molecular dynamics simulations," AIP Conference Proceedings 234, 45 (1991).

 

26)  R. Biswas, I. Kwon, and C. M. Soukoulis, "Molecular dynamics simulations of the structural, vibrational, and electronic properties of amorphous silicon," Materials Research Society Symposium  Proceedings 192, 251 (1990) (invited paper).

 

27)  W. A. Kamitakahara, R. Biswas, A. M. Bouchard, F. Gompf and J. B. Suck, "Vibrational Spectra for hydrogenated amorphous semiconductors," Materials Research Society Symposium Proceedings 166, 361 (1990).

 

28)  R. Biswas, A. M. Bouchard, W. A. Kamitakahara, G. S. Grest, and C. Soukoulis, "Vibrational spectra and vibrational localization in amorphous silicon," Mater. Res. Soc. Symp. Proc. 41, 213 (1989).

 

29)  D. R. Hamann and R. Biswas, "Classical models for silicon structural energies," Proceedings, 18th International Conference on Physics of Semiconductors, Stockholm (1986).

 

30)  R. Biswas and D. R. Hamann, "Classical two- and three-body interatomic potentials for silicon simulations," Mat. Res. Soc. Symp. Proc. 63, 173 (1985).

 

 

 

 

PATENTS

 

Awarded U.S. Patent 5,406,573. April 11, 1995, “Periodic dielectric structure for production of photonic band gap and method for fabricating the same” E. Ozbay, G. Tuttle, E. Michel, K.M. Ho, R. Biswas, C.T. Chan, and C.M. Soukoulis.

 

Awarded U.S. Patent 06339030. January, 2002 “Method for fabricating photonic band gap crystals using ceramic processing techniques” K. Constant, G. Subramania, R. Biswas, K.-M. Ho, Originally filed 12/2000.

 

“Highly directional Antennas using photonic band gap crystals” R. Biswas, E. Ozbay, B. Temelkuran, M. Sigalas, G. Tuttle, K.M. Ho, No. AL445, ISURF#02561: Provisional U.S. Patent filed 9/2000; full patent filed 9/26/2001.

 

“Fabrication of Photonic band Gap Materials using microtransfer molding techniques”

W. Leung, G. Subramania, K. Constant, R. Biswas, K.-M. Ho, M. Sigalas, J. Huang, K. Sutherland, I. El-Kady, H. Kang. Filed Provisional U. S. Patent 2/23/2001.

 

Record of invention:

“Design of Photonic band gap structures with higher gaps” R. Biswas, K.-M. Ho, filed Nov-22-1996, No AL409, ISURF #02216I.


INVITED TALKS (with subjects)

 

American Physical Society March Meeting,  March 2003. Semiconductors

 

Tata Institute of Fundamental Research, Bombay, India, July 2002. Photonics

 

2001 URSI International Symposium on Electromagnetic Theory, Victoria, Canada, May 2001. Exceptionally directional antennas

 

 NATO Advanced Study Institute on Photonic Crystals, Crete, Greece, June19-30 (2000)

 1. Photonic crystals 2. Antenna (two talks)

 

NREL workshop on amorphous thin film solar materials, August 2000. Semiconductors.

 

Invited talk, Materials Research Society Spring Meeting (April 2000). Semiconductors

University of Cincinnati (June 2000). Semiconductors

 

Materials Design: experimental and computational challenges. Mardi Gras Year 2000 conference, Louisiana State University, March 2000. Semiconductors

 

Seminar, State University of New York (SUNY), Buffalo. December 1999. Photonics

 

Seminar, Jadavpur Univ, Calcutta (June 1999). Semiconductors

 

IEEE Antennas and Propagation Society International Symposium, Atlanta, GA, June 1998 (talk given by M. Sigalas). Antennas and photonics

 

Seminar, Ohio University, Athens, Ohio, May 1998. Semiconductors

 

Seminar, Tata Institute of Fundamental Research, Bombay, India, August 1997; Semiconductors.

 

Jadavpur University, Calcutta, July 1997. Semiconductors.

 

University of Delaware, Seminar, May 1997. Photonics

 

Tata Institute of Fundamental Research, Bombay, India, July 1995. Photonics & antennas

 

NATO ASI workshop on Photonic band gap crystals, Elounda, Greece, June 1995. Antennas

 

NREL Defect relaxation workshop, Denver, February 1995. Semiconductors.

 

DOE workshop on applications of molecular dynamics to SiC systems, Santa Barbara, CA, August 1993. Semiconductors.

 

Colloquium, Department of Physics, Iowa State University, March 1993. Semiconductors.

 

Colloquium, Department of Physics, Kansas State University, February 1993. Semiconductors.

 

Seminar at Workshop on heat transport in glasses above 10K, 7th International Conference on Phonon Scattering in Condensed Matter, Ithaca, NY, August 1992. Semiconductors.

 

Colloquium, University of Missouri, Columbia, January 1992. Semiconductors.

 

American Metallurgical Society, Symposium on computer simulation applied to phase transformations, Invited talk, Cincinnati, October 1991. Semiconductors.

 

American Physical Society March Meeting, Invited Talk, Cincinnati, March 1991. Semiconductors.

 

Colloquium, Department of Materials Science, University of

Illinois, Urbana-Champaign, January 1991. Semiconductors.

 

Materials Research Society Meeting, Invited talk - Amorphous Silicon Symposium, San Francisco, April 1990. Semiconductors.

 

Colloquium, Dept. of Electrical Engineering, Princeton

University, Princeton, New Jersey, March 1990. Semiconductors.

 

Seminar, Solar Energy Research Institute, Golden, Colorado, February 1990. Semiconductors.

 

1989 Midwest Solid State Symposium, Invited talk, Indiana University, October 1989. Semiconductors.

 

Amorphous silicon and solar cell material workshop talks (22) presenting recent progress in simulations of the light-induced degradation in a-Si:H 

 

Collaborators invited talks involving joint research:

 

“Photonic band gap crystals” E. Ozbay, American Physical Society March Meeting, Invited Talk, San Jose, March 1995.

 

“Neutron Scattering from Solids: Experiment and Computer Simulation”, W. Kamitakahara, American Physical Society March Meeting, Invited Talk, St. Louis, March 1989. (Joint work)

 

Collaborators have presented several (>30) talks on photonic band gap materials involving joint work.

 

 

 

 

Session Chairperson at Conferences

 

Materials Research Society Spring Meeting.

April 2001 Metastability session.

April 2000. San Francisco, April 2000, Structure and Hydrogen session.

 

International Conference on Microcrystalline and Amorphous Semiconductors. Utah, August 1999. Session on Glasses I


 

PRESS RELEASES

 

Materials Research Society Bulletin (July 2002): Research/Researchers

3D Tungsten/SiO2 structure yield Infrared photonic band gaps

 

Photovoltaics Bulletin - International Newletter on Photovoltaics, “Researchers look to tailor solar cell materials”, March 2002

Iowa State University Press release, February 2002. “Researchers look to tailor solar cell materials”.

 

DOE Pulse – December 13, 1999- “New crystals for the next millennium”

 

Inquiry Magazine, Ames Laboratory, Fall 1999, “Photonic Frenzy”.

 

Photonics Spectra, Emerging Technologies section, April 1995, “The Black hole of silicon”

 

Electronic Materials Technology News, February 1995, “Photonic band gap crystals are formed”.

 

Inquiry Magazine, Ames Laboratory Spring 1994, “The Spectral Sieve”

 

Optics and Photonic News, March 1994, “Using Microfabrication techniques on photonic band gap structures”

 

DOE Center of Excellence for the Synthesis and Processing of Advanced Materials, Research Highlights 1998, “Light-induced metastability in hydrogenated amorphous silicon”

 

Sandia National Labs/ Research Highlights 1998.

Scientific American Explorations with light. 9/21/98 www.sciam.com/explorations/1998/


REFERENCES

 

External References:            (Other external references available upon request)

 

1.         Dr. Donald R. Hamann

            Former Department Head   

Lucent Bell Laboratories

            Murray Hill, NJ 07974

            Tel: (908)582-4454;  drh@bell-labs.com

                                                dhamann@physics.rutgers.edu

2.         Dr. S. Lin

            Group Leader, Photonics, Sandia National Laboratories,

            Albuquerque, NM 87185-1411

            Tel: (505)844-8097;  slin@sandia.gov

 

3.         Prof. S. Wagner

            Former Chair, Dept. of Electrical Engineering

            Princeton University, Princeton, NJ 08854

            Tel: (609)258-4631; wagner@princeton.edu

 

4.         Dr. Subhendu Guha

            President, United Solar Systems Corp.

            3800 Lapeer Road, Auburn Hills, MI 48326

            Tel: (248)475-0100; sguha@uni-solar.com

 

5.         Dr. Howard Branz

            Former Department Head, National Renewable Energy Laboratory

            1617 Cole Blvd, Golden CO

            Tel: (303)384-6694; hbranz@nrel.gov

 

Internal References:

 

1.         Prof. C. M. Soukoulis        

            Department of Physics , Iowa State University, Ames, IA 50011

            Tel: (515)294-2816: soukoulis@ameslab.gov

 

2.         Prof. K. M. Ho

            Department of Physics, Iowa State University, Ames, IA 50011

            Tel: (515)294-1960; kmh@ameslab.gov

 

3.         Prof. V. Dalal

            Dept. of Electrical Engineering and Computer Engineering & MRC

            Iowa State University, Ames, IA 50011.

            Tel: (515)294-1077; vdalal@iastate.edu

 


 

 



[1] Bold name indicates paper is in the area of electromagnetics and photonics