INVITED TALKS

 

“Exceptionally directional antennas with photonic band gap materials” 2001 URSI International Symposium on Electromagnetic Theory, Victoria, Canada, May 2001

 

“Structure of colloidal photonic crystals” and

“Antenna Applications of Photonic crystals”, NATO Advanced Study Institute on Photonic Crystals, Crete, Greece, June19-30 (2000)

 

“Atomic mechanisms of metastability in amorphous silicon” Invited talk, Materials Research Society Spring Meeting (April 2000) & University of Cincinnati (June 2000).

 

“Unusual behavior of hydrogen in silicon- connecting atomistic simulations to experimental phenomena” Materials Design: experimental and computational challenges. Mardi Gras Year 2000 conference, Louisiana State University, March 2000.

 

“Photonic band gap crystals- theory and experiment”, Seminar, State University of New York (SUNY), Buffalo. December 1999.

 

“Metastability in amorphous silicon”, Seminar, Jadavpur Univ, Calcutta (June 1999).

 

“Dipole antennas on three-dimensional photonic band gap crystals”, IEEE Antennas and Propagation Society International Symposium, Atlanta, GA, June 1998 (talk given by M. Sigalas)

 

“Unusual behavior of hydrogen in silicon”, Condensed Matter Physics Seminar, Ohio University, Athens, Ohio, May 1998

 

“Unusual behavior of hydrogen in silicon and amorphous silicon” Seminar, Tata Institute of Fundamental Research, Bombay, India, August 1997; Jadavpur University, Calcutta, July 1997.

 

“Recent progess in Photonic band gap materials”, Seminar, University of Delaware, May 1997.

 

“Photonic band gap materials- Theory and Experiment” Tata Institute of Fundamental Research, Bombay, India, July 1995.

 

“Optimized Antennas on Photonic band gap crystals” NATO ASI workshop on Photonic band gap crystals, Elounda, Greece, June 1995

 

“Structural Relaxation at Charged Defects in a-Si:H” NREL Defect relaxation workshop, Denver, February 1995

 

"Molecular dynamics of  thin film growth and amorphous semiconductors" DOE workshop on applications of molecular dynamics to SiC systems, Santa Barbara, CA, August 1993

 

"Understanding semiconductor physics through molecular dynamics," Colloquium, Department of Physics, Iowa State University, March 1993.

 

"Understanding semiconductor physics through molecular dynamics," Colloquium, Department of Physics, Kansas State University, February 1993.

 

"Thermal conductivity of amorphous solids with molecular dynamics simulations" Seminar at Workshop on heat transport in glasses above 10K, 7th International Conference on Phonon Scattering in Condensed Matter, Ithaca, NY, August 1992

 

"Molecular dynamics of semiconductors," Colloquium, Department of Physics,

University of Missouri, Columbia, January 1992.

 

"Understanding the light-induced degradation in a-Si:H with molecular dynamics simulations," American Metallurgical Society, Symposium on computer simulation applied to phase transformations, Invited talk, Cincinnati, October 1991.

 

"Theory of the structure of a-Si:H," American Physical Society March Meeting, Invited Talk, Cincinnati, March 1991.

 

"What we can learn about semiconductor materials from molecular dynamics

simulations," Colloquium, Department of Materials Science, University of

Illinois, Urbana-Champaign, January 1991.

 

"Molecular dynamics simulations of amorphous silicon," Materials Research Society Meeting, Invited talk - Amorphous Silicon Symposium, San Francisco, April 1990.

 

"New perspectives on the properties of amorphous silicon with molecular

dynamics simulations," Colloquium, Dept. of Electrical Engineering, Princeton

University, Princeton, New Jersey, March 1990.

 

"Molecular dynamics simulations of the structural properties of amorphous

silicon"  Seminar, Solar Energy Research Institute, Golden, Colorado,

February 1990.

 

"Properties of amorphous silicon," 1989 Midwest Solid State Symposium, Invited talk, Indiana University, October 1989.

 

"Structural, Vibrational, and electronic properties of amorphous silicon"

Seminar, Pennsylvania State University, December 1988.

 

“H-bonding and vibrational modes on tungsten surfaces” Seminar, AT&T Bell Laboratories, March 1986.

 

“Modeling silicon with two- and three-body interatomic potentials” Condensed Matter Physics Seminar, Harvard University, November 1985.

 

Amorphous silicon and solar cell material workshop talks (22) presenting recent progress in simulations of the light-induced degradation in a-Si:H 

 

Collaborators invited talks involving joint research:

 

“Photonic band gap crystals” E. Ozbay, American Physical Society March Meeting, Invited Talk, San Jose, March 1995.

 

“Neutron Scattering from Solids: Experiment and Computer Simulation”, W. Kamitakahara, American Physical Society March Meeting, Invited Talk, St. Louis, March 1989. (Joint work)

 

Collaborators such as C.M. Soukoulis and K.M. Ho have presented several (>30) talks on photonic band gap materials involving joint work.

 

 

Session Chairperson at Conferences

 

Materials Research Society Spring Meeting. April 2000. San Francisco, April 2000, Structure and Hydrogen session. April 2001 Metastability session.

International Conference on Microcrystalline and Amorphous Semiconductors. Utah, August 1999. Session on Glasses 1

Publication List: Refereed Journal Papers:

 

1.     R. Biswas and V. Ambegaokar, "Phonon spectrum of a model of electronically excited silicon," Phys. Rev. B 26, 1980 (1982).

 

2.     V. Ambegaokar and R. Biswas, "Phonon instabilities in electronically excited semiconductors," Phys. Rev. Lett. 50, 285 (1983) Comment.

 

3.     R. Biswas and M. Kertesz, "Electronic structure and metallization of silicon," Phys. Rev. B 29, 1791 (1984).

 

4.     R. Biswas, R. M. Martin, R. J. Needs, and O. H. Nielsen, "Complex  tetrahedral structures of silicon and carbon under pressure," Phys. Rev. B 30, 3210 (1984).

 

5.     R. Biswas and D. R. Hamann,  "Interatomic potentials for silicon structural energies," Phys. Rev. Lett. 55, 2001 (1985).

 

6.     R. Biswas and D. R. Hamann, "Simulated annealing of silicon clusters in Langevin molecular dynamics," Phys. Rev. B 34, 895 (1986).

 

7.     R. Biswas and D. R. Hamann, "Bonding geometry and H vibrations of W(001)," Phys. Rev. Lett. 56, 2291 (1986).

 

8.     R. Biswas, R. M. Martin, R. J. Needs and O. H. Nielsen, "Stability and electronic properties of complex structures of silicon and carbon under pressure - density functional calculations," Phys. Rev. B 35, 9559 (1987).

 

9.     R. Biswas and D. R. Hamann, "New classical models for silicon structural energies," Phys. Rev. B 36, 6434 (1987)

 

10.  R. Biswas, G. S. Grest, and C. M. Soukoulis, "Generation of amorphous  silicon structures using molecular dynamics simulations," Phys. Rev. B 36, 7437 (1987).

 

11.  R. Biswas, A. M. Bouchard, W. A. Kamitakahara, C. M. Soukoulis, and G. S. Grest, "Vibrational localization in amorphous silicon,"  Phys. Rev. Lett. 60, 2280 (1988).

 

12.  R. Biswas, G. S. Grest and C. M. Soukoulis, "Molecular dynamics  simulation of cluster and atom deposition on silicon (111)," Phys. Rev. B 38, 8154 (1988).

 

13.  A. M. Bouchard, R. Biswas, W. A. Kamitakahara, C. M. Soukoulis, and G.S. Grest, "Vibrational properties of amorphous silicon-germanium alloys and superlattices," Phys. Rev. B 38, 10499 (1988).

 

14.  W. A. Kamitakahara, R. Biswas, A. M. Bouchard, and F. Gompf, "Dynamics of Amorphous Semiconductors: Experiment and Computer Simulation," Physica B 156-157,  213 (1989).

 

15.  R. Biswas, I. Kwon, A. M. Bouchard, C. M. Soukoulis, and G. S. Grest, "Intense Small-Wavevector Scattering from Voids in Amorphous Silicon - A Theoretical Simulation," Phys. Rev. B 39, 5101 (1989).

 

16.  R. Biswas, C. Z. Wang, C. T. Chan, K. M. Ho and C. M. Soukoulis, "Electronic structure of dangling and floating bonds in amorphous silicon," Phys. Rev. Lett. 63, 1491 (1989).

 

17.  I. Kwon, R. Biswas, G. S. Grest, and C. M. Soukoulis, "Molecular dynamics simulation of amorphous and epitaxial Si growth on Si (111)," Phys. Rev. B. 41, 3678 (1990).

 

18.  C. Soukoulis and R. Biswas, "A theoretical investigation on structural, vibrational and electronic properties of amorphous silicon," in 2nd International Workshop on Non-Crystalline Solids, ed. J. Colmenero (World Sci. 1990).

 

19.  R. Biswas, C. Z. Wang, C. T. Chan, K. M. Ho and C. M. Soukoulis, “Electronic structure of dangling and floating bonds in amorphous silicon," Electrochemical Society Journal 91-4, 463 (1990).

 

20.  I. Kwon, R. Biswas, and C. M. Soukoulis, "Molecular dynamics simulations of the stability of amorphous silicon," Phys. Rev. B 43, 1859 (1991) (Rapid Communications).

 

21.  Y. H. Lee, R. Biswas, C. M. Soukoulis, C. Z. Wang, C. T. Chan, and K.M. Ho, "Molecular dynamics simulation of the thermal conductivity of amorphous silicon," Phys. Rev. B 43, 6573 (1991). 

 

22.  R. Biswas, I. Kwon, and C. M. Soukoulis, "Mechanism of the Staebler-Wronski effect in a-Si:H," Phys. Rev. B 44, 3403 (1991) (Rapid Communications).

 

23.  I. Kwon, R. Biswas, and C. M. Soukoulis, "Molecular dynamics simulations of the Staebler-Wronski effect in hydrogenated amorphous silicon," Phys. Rev. B. 45, 3332 (1992).

 

24.  R. Biswas, "Simulations of H deposition processes in a-Si:H film growth," J. of Appl. Physics 73, 3295 (1993).

 

25.  A. D. Zdetsis, R. Biswas, " A parallel molecular dynamics strategy for PVM," NATO Adv. Study Institute on Statics and Dynamics of Alloy Phase Transformations  ed. P. Turchi and A. Gonis (Plenum 1993).

 

26.  I. Kwon, R. Biswas, C. Z. Wang, C. M. Soukoulis, and K. M. Ho, "Transferable tight-binding models for silicon,"  Phys. Rev. B. 49, 7243  (1994).

 

27.  E. Ozbay, G. Tuttle, R. Biswas, M. Sigalas, and K.M. Ho, "Micromachined millimeter wave photonic band gap crystals," Appl. Phys. Lett.  64, 2059 (1994).

 

28.  K.M. Ho, C.T. Chan, C.M. Soukoulis, R. Biswas and M. Sigalas, "Photonic Band Gaps in Three dimensions: new layer-by-layer periodic structures" Solid State Comm. 89, 413 (1994).

 

29.  E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C.T. Chan, C.M. Soukoulis, K.M. Ho, "Measurement of Three-dimensional photonic band gap in new crystal structure made of dielectric rods",  Phys. Rev. B 50, 1945 (1994).

 

30.  Q. Li, and R. Biswas,  "Transferable tight-binding models of Si-H systems," Phys. Rev. B. 50, 18090 (1994).

 

31.  E. Ozbay, G. Tuttle, R. Biswas, K.M. Ho, J. Bostak, and D.M. Bloom, "Double-Etch Geometry for millimeter-wave photonic band gap crystals," Appl. Phys. Lett. 65, 1617 (1994).

 

32.  E. Ozbay, E. Michel, G. Tuttle, R. Biswas, K.M. Ho, J. Bostak, and D.M. Bloom, "Terahertz spectroscopy of three-dimensional photonic band gap crystals," Optics Letters 19, 1155  (1994).

 

33.  R. Biswas, K. Roos, and M. Tringides, "Low Temperature growth on Si(111) substrates," Phys. Rev. B 50, 10932 (1994).

 

34.  R. Biswas, I. Kwon,  C.M. Soukoulis, and Q. Li, “Simulations of defect formation processes in hydrogenated amorphous silicon”, Solid State Phenomena, 44-46, 723 (1995).

 

35.  Q. Li and R. Biswas, “Hydrogen Rebonding and defect formation in a-Si:H”, Phys. Rev B 52, 10705 (1995).

 

36.  E. Ozbay, G. Tuttle, M. Sigalas, R. Biswas, S. McCalmont, C.M. Soukoulis, and K.M. Ho, “Laser Micromachined millimeter wave photonic band gap structures”, Appl. Phys. Lett. 67, 1969 (1995).

 

37.  S.D. Cheng, R. Biswas, E. Ozbay, S. McCalmont, G. Tuttle, and K.M. Ho, “Optimized Dipole antennas on photonic band gap crystals”, Appl. Phys. Lett. 67, 3399, (1995).

 

38.  R. Biswas, C.T. Chan, M. Sigalas, C.M. Soukoulis, and K.M. Ho, “Photonic Band Gap Materials”,  NATO Advanced Study Institute 315, p. 23 (Kluwer, 1995).

 

39.  R. Biswas, S.D. Cheng, E. Ozbay, S. McCalmont, W. Leung, G. Tuttle, and K.M. Ho, “Optimized Dipole antennas on photonic band gap crystals”, NATO Advanced Study Institute 315, p. 377  (Kluwer, 1995).

 

40.  Q. Li and R. Biswas, “Bond-length disorder and metastability in a-Si:H”, Appl. Phys. Lett. 68, 2261 (1996).

 

41.  M. M. Sigalas, R. Biswas, and K.- M. Ho, “Theoretical Study of dipole antennas on photonic band gap materials”, Microwave and Optical Technology Letters 13, 205 (1996).

 

42.  R. Biswas, E. Ozbay, and K.M. Ho, “Photonic band gaps with novel double-etched structures”,  J. of Appl. Phys. 80, 6749 (1996).

 

43.  M. Sigalas, R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs-Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, K.-M. Ho, “Dipole antennas on Photonic band gap crystals- experiment and simulation”, Microwave and Optical Technology Letters, 15, 153 (1997).

 

44.  W. Leung, R. Biswas, S.D. Cheng, M. M. Sigalas,  S. McCalmont, G. Tuttle, and K.M. Ho, “Slot Antennas on photonic band gap crystals”, IEEE- Transactions on Antennas and Propagation, 45, 1569 (1997). (Letter section).

 

45.  R. Biswas, Q. Li, Y. Yoon, and H. M. Branz, “Dangling bond levels and structure relaxation in amorphous hydrogenated silicon”, Phys.  Rev. B 56, 9197 (1997).

 

46.  M.M. Sigalas, C.M. Soukoulis, R. Biswas, and K.M. Ho, “Effect of magnetic permeability on photonic band gaps”, Phys.  Rev. B 56, 959 (1997).

 

47.  R. Biswas, M.M. Sigalas, C.M. Soukoulis, and K.M. Ho,“Photonic band structure”, Chapter IV, page 143, in Topics in Computational Materials Science, e.d. C. Y. Fong (World Scientific, Singapore and River Edge N.J., 1998). Book chapter

 

48.  R. Biswas, Q. Li, B.C. Pan, Y. Yoon, “Mechanism for hydrogen diffusion in amorphous silicon”, Phys. Rev. B. 57, 2253 (1998).

 

49.  R. Biswas and B.C. Pan, “Microscopic nature of Staebler-Wronski defect formation in amophous silicon”, Applied Physics Letters. 72, 371 (1998).

 

50.  R. Biswas, M.M. Sigalas, G. Subramania, and K.M. Ho,“Photonic band gaps in colloidal systems”, Phys. Rev. B 57, 3701 (1998).

 

51.  M.M. Sigalas, C.M. Soukoulis, R. Biswas, and K.M. Ho, “Theoretical investigation of Defects in Photonic band gap crystals in the presence of dielectric losses”, Phys. Rev. B. 57, 3815 (1998).

 

52.  R. Biswas, Y.-P. Li, and B.C. Pan, “Enhanced stability of deuterium in silicon,” Applied Physics Letters. 72, 3500 (1998).

 

53.  S. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith (Sandia), R. Biswas, K.-M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurtz, and J. Bur, “A Three-dimensional photonic crystal operating at infrared wavelengths”, letters to Nature 394, 251 (1998) (7-16-98).

 

54.  W. Leung, G, Tuttle, M.M. Sigalas, R. Biswas, C.M. Soukoulis, and K.M. Ho, “High-Q defects in metallic photonic band gap crystals”, Journal of Applied Physics 84,  4091 (1998).

 

55.  “M.M. Sigalas, R. Biswas, K.M. Ho, and C. M. Soukoulis”, Theoretical investigation of off-plane propagation of electromagnetic waves in two-dimensional photonic crystals, Phys. Rev. B  58, 6791 (1998).

 

56.  M. Sigalas, R. Biswas, K.-M. Ho, W. Leung, G. Tuttle, and D. Crouch, “Effect of photonic band gap crystals on dipole antennas”, Electromagnetics 19, no. 3, 291 (1999). (special issue, invited paper)

 

57.  M.M. Sigalas, R. Biswas, G. Tuttle, C.M. Soukoulis, and K.M. Ho, “ Photonic Crystals”, chapter in Wiley Encyclopaedia of Electrical and Electronic Engineering Volume 16, 345  (John Wiley, 1999). Book Chapter

 

58.  R. Biswas, and Y.P. Li, “H-flip model of light induced changes of amorphous silicon”, Phys. Rev. Letters 82, 2512 (1999).

 

59.  G. Subramania, K. Constant, R. Biswas, M.M. Sigalas, K.-M. Ho, “Optical Photonic crystals fabricated from colloidal systems”, Appl. Phys. Lett. 74, 3933  (1999).[1]

 

60.   S. Lin, J. Fleming, M.M. Sigalas, R. Biswas, K.-M. Ho, “in Photonic band gap Microcavity in three dimensions”, Phys. Rev. B. 59, 15579 (1999) Rapid Communications.

 

61.   M.M. Sigalas, R. Biswas, K.-M. Ho, C.M. Soukoulis, and D.D. Crouch, “Waveguides in three-dimensional metallic photonic band gap materials”, Phys. Rev. B. 60, 4426 (1999).

 

62.   M.M. Sigalas, R. Biswas, K.-M. Ho, C.M. Soukoulis, D. Turner, B. Vasiliu, S.C. Kothari, and Shawn Lin, “Waveguide bends in three-dimensional layer-by-layer photonic band gap materials”, Microwave and Opt. Technology Lett. 23, 57 (1999).

 

63.  M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho "The effects of disorder on Photonic Band Gaps", Phys. Rev. B 59, 12767 (1999).

 

64.  G. Subramania, K. Constant, R. Biswas, M.M. Sigalas, K.-M. Ho, “Optical Photonic crystals fabricated from colloidal systems”, Journal of Lightwave Technology 17, 1970 (1999). (IEEE/OSA Publications, Nov-99).

 

65.   I. El-Kady, M.M. Sigalas, R. Biswas, K.-M. Ho, “Waveguides in two-dimensional photonic bandgap materials”, J. of Lightwave Technology 17, 2042 (1999).

 

66.   B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, G. Tuttle, M.M. Sigalas, and K-M. Ho, “Photonic crystal based resonant antenna with a very high directivity”, Journal of  Applied Physics 87, 603 (January-2000).

 

67.  R. Biswas and Y.-P. Li, “Metastability in amorphous silicon from hydrogen flips”, J. Non-Crystalline Solids 266-269, 401 (2000).

 

68.   R.Biswas, Y.P. Li and B.C. Pan, “Isotopic effect between hydrogen and deuterium  emission in silicon”, J. Non-Crystalline Solids 266-269, 176 (2000).

 

69.  R. Biswas, M.M. Sigalas, G. Subramania, C.M. Soukoulis, and K.M. Ho, “Photonic band gaps of porous solids, Physical Review B 61, 4549 (2000).

 

70.  G. Subramania, K. Constant, R. Biswas, M.M. Sigalas, K.-M. Ho, “Synthesis of thin film photonic crystals”, Synthetic Metals 116, 445-448 (2001).

 

71.   A. Zakhidov, R. H. Baughman, I. I. Khayrullin, I. Udod, M. Kozlov, N. Eradat, V. Vardeny, M. Sigalas, and R. Biswas, “Three-dimensionally periodic conductive nanostructures: network vs cermet topologies for metallic photonic band gaps”, Synthetic Metals 116, 419-426 (2001).

 

72.  I. El-Kady, M.M. Sigalas, R. Biswas, C.M. Soukoulis, K.M. Ho, “Photonic band gaps in three-dimensional metallic lattices”, Phys. Rev. B 62, 15299 (2000).

 

73.  “Photonic Crystals”, M. M. Sigalas, K. M. Ho, R. Biswas, C. M. Soukoulis, in Optics of Nano Structured materials, p 1-38, Edited by V. A. Markel and T. F. George, (John Wiley and Sons, New York,  2000). Book Chapter

 

74.  G. Subramania, K. Constant, R. Biswas, M.M. Sigalas, K.-M. Ho, “Inverse face-centered cubic thin film photonic crystals”,  Advanced Materials 13,  443-446 (2001).

 

75.   S. Lin, P. Fleming, M.M. Sigalas, R. Biswas, and K. -M. Ho, “A complete three-dimensional photonic band gap in a simple cubic system”, J. of the Optical Society of America B. 18, 32 (2001).

 

76.  M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides”,  Phys. Rev. B 63, 081107(R) (2001).

 

77.  G. Subramania, R. Biswas, K. Constant, M. .M. Sigalas, K.-M. Ho, “Structural characterization of thin film photonic crystals”,  Phys. Rev. B. 63, 235111 (2001).

 

78.  R. Biswas, E. Ozbay, B. Temelkuran, M. Bayindir, M.M. Sigalas, and K-M. Ho, “Exceptionally directional sources with photonic band gap crystals”, J. Optical Society of America B. in press. (November-2001)

 

79.  R. Biswas, E. Ozbay, B. Temelkuran, M. Bayindir, M. M. Sigalas , and K.-M. Ho, “Exceptionally directional sources with photonic band gap crystals”, Proceedings NATO Advanced Study Institute on Photonic Crystals and Light localization in the 21st century, ed. C. M. Soukoulis, pages 321-328  (2001). (Plenum Press)

 

80.  R. Biswas, B.C. Pan, “Defect kinetics in new model of metastability in a-Si:H”, to appear in Journal of Non-Crystalline Solids, (2001).

 

Submitted and Under Review:

 

81.  R. Biswas, “Three-dimensional photonic band gaps in modified simple cubic lattices”, submitted to Phys. Rev. B.

82.  R. Biswas, B.C. Pan, and Y. Ye, “Metastability of amorphous silicon from silicon network rebonding”, submitted to Phys. Rev. Letters.

 

In final preparation

83.  M. Pralle, I. El-Kady, E.A. Johnson, R. Biswas, A. C. Greenwald, J. T. Daly, B. Kinkade, M. McNeal, N. Moelders, T. George and D. S. Choi, “Tunable narrow band emitters in the infrared”, to be submitted to Science.

84.  Y. Ye, R. Biswas, J. Morris, A. Bastawaros, and A. Chandra, Simulation of Nanoscale machining of copper with molecular dynamics”, in preparation for J. of Nanotechnology.

 

 


Refereed Papers in Conference Proceedings:

 

1)    R. Biswas and D. R. Hamann, "Classical two- and three-body interatomic potentials for silicon simulations," Mat. Res. Soc. Symp. Proc. 63, 173 (1985).

 

2)    D. R. Hamann and R. Biswas, "Classical models for silicon structural energies," Proceedings, 18th International Conference on Physics of Semiconductors, Stockholm (1986).

3)    R. Biswas, A. M. Bouchard, W. A. Kamitakahara, G. S. Grest, and C. Soukoulis, "Vibrational spectra and vibrational localization in amorphous silicon," Mater. Res. Soc. Symp. Proc. 41, 213 (1989).

 

4)    W. A. Kamitakahara, R. Biswas, A. M. Bouchard, F. Gompf and J. B. Suck, "Vibrational Spectra for hydrogenated amorphous semiconductors," Materials Research Society Symposium Proceedings 166, 361 (1990).

 

5)    R. Biswas, I. Kwon, and C. M. Soukoulis, "Molecular dynamics simulations of the structural, vibrational, and electronic properties of amorphous silicon," Materials Research Society Symposium  Proceedings 192, 251 (1990) (invited paper).

 

6)    R. Biswas and I. Kwon, "New Interpretations of the Staebler-Wronski effect in a- Si:H with molecular dynamics simulations," AIP Conference Proceedings 234, 45 (1991).

 

7)    R. Biswas, I. Kwon, and C. M. Soukoulis, "Assessment of weak Si-Si bond breaking mechanisms of the Staebler-Wronski effect," Mater. Res. Soc. Symp. Proceedings 219, 99 (1991).

 

8)    C. R. Wronski, N. Maley, R. Biswas et al, "Findings and plans of the stable Materials Advisory Research Team," Proceedings 11th European Photovoltaic solar energy conference (1992) pages 72-75.

 

9)    R. Biswas, K. Roos, and M. Tringides, " Low Temperature Growth Mechanisms for RHEED oscillations," Mater. Res. Soc. Symp. Proc. 312, 249 (1993).

 

10) I. Kwon, R. Biswas, " Structure and stability of microvoids in a-Si:H" Mater. Res. Soc. Symp. Proc. 297,  225 (1993).

 

11) Q. Li, R. Biswas and C.M. Soukoulis, "New Approaches to molecular dynamics simulations of a-Si:H," Mater. Res. Soc. Symp. Proc. 336, 219 (1994).

 

12) Q. Li and R. Biswas, “Metastable defect formation by hydrogen relocation and rebonding”, Materials Research Society Proceedings 377, 407 (1995).

 

13) M. M. Sigalas, R. Biswas, C. T. Chan, K.M. Ho and C.M. Soukoulis, “Theoretical studies of photonic band gap materials”, Proceedings 12th annual review of progress in Applied Computational Electromagnetics  p. 436 (1996).

 

14) Q. Li and R. Biswas, “Metastable defects in a-Si:H from bond-length disorder”, Materials Research Society Proceedings 420, 623 (1996).

 

15) R. Biswas and Q. Li, “Local structural changes around charged dangling bonds”, Materials Research Society Proceedings 420, 673 (1996).

 

16) M. Sigalas, R. Biswas, K.-M. Ho, W. Leung, G. Tuttle, and D. Crouch, “Applications of photonic band gap materials” Proceedings 12th annual review of progress in Applied Computational Electromagnetics  p. 412 (1997).

 

17) R. Biswas, Q. Li, B.C. Pan, and Y. Yoon, “Reactivity and migration of H in a-Si:H”, Materials Research Society Symposium Proceedings 467, 135 (1997).

 

18) M. Sigalas, R. Biswas, K.-M. Ho, C.M. Soukoulis and D. Crouch, “Waveguides in photonic band gap crystals”, submitted to Proceedings 14th annual review of progress in Applied Computational Electromagnetics  p. 144 (1998).

 

19) R. Biswas and B.C. Pan, “Microscopic nature of light-induced defects”, MRS Symposium 507, 607 (1998).

 

20) R. Biswas, and Y.P. Li, “H-flip model for metastable structural changes of amorphous silicon”, Materials Research Society Symp. Proc. 557, 371 (1999).

 

21) M. Bayindir, B. Temelkuran, E. Ozbay, R. Biswas, G. Tuttle, M.M. Sigalas, and K-M. Ho,  Microwave Applications of Photonic crystals, Proceedings European Microwave Conference, page 520, (2000).

 

22) M. Bayindir, B. Temelkuran, E. Ozbay, R. Biswas, G. Tuttle, M.M. Sigalas, and K-M. Ho,  Photonic crystal based resonant antenna with a very high directivity, Proceedings, Antennas and Propagation, Davis, Switzerland (April 2000).

 

23) “Narrow band emission from lithographically defined photonic bandgap structures in silicon: matching theory and experiment”, A. C. Greenwald, J. T. Daly, E. A. Johnson, B. Kinkade, M. McNeal, M. Pralle, and N. Moelders, Ion Optics, Inc, T. George and D. S. Choi, Jet Propulsion Laboratory, R. Biswas and I. El-Kady. MRS Proceedings 637, E2.6.1 (2000). (Microphotonics- Materials, Physics  and Applications).

 

24) R. Biswas, Y.-P. Li, and B.C. Pan, “Mechanisms of metastability in hydrogenated amorphous silicon”,  Proceedings MRS 609,  A3.5 (2000). Invited paper

 

25) R. Biswas, B.C. Pan and Y. Ye, “Network rebonding model for metastability in amorphous silicon”, Proceedings Materials Research Society 664, A14.1 (2001).

 

26) R. Biswas, E. Ozbay, B. Temelkuran, M. Bayindir,  M.M. Sigalas, and K-M. Ho, “Antenna Applications of Photonic band gap crystals”, Invited paper T23.24, Proceedings, URSI-2001 Symposium on Electromagnetic Theory. 

 

 

 

 

PATENTS

 

Awarded U.S. Patent 5,406,573. April 11, 1995, “Periodic dielectric structure for production of photonic band gap and method for fabricating the same” E. Ozbay, G. Tuttle, E. Michel, K.M. Ho,  R. Biswas, C.T. Chan, and C.M. Soukoulis.

 

“Highly directional Antennas using photonic band gap crystals” R. Biswas, E. Ozbay, B. Temelkuran, M. Sigalas, G. Tuttle, K.M. Ho, No. AL445, ISURF#02561: Provisional U.S. Patent filed 9/2000; full patent filed 9/26/2001.

 

 “Method for fabricating photonic band gap crystals using ceramic processing techniques” K. Constant, G. Subramania, R. Biswas, K.-M. Ho, Filed U.S. Patent 12/2000. Under review. ISU Invention No. AL-388 with ISURF/Ames Lab, 30-Aug-1995.

 

“Fabrication of Photonic band Gap Materials using microtransfer molding techniques”

W. Leung, G. Subramania, K. Constant, R. Biswas, K.-M. Ho, M. Sigalas, J. Huang, K. Sutherland, I. El-Kady, H. Kang. Filed Provisional U. S. Patent 2/23/2001.

 

Record of invention:

“Design of Photonic band gap structures with higher gaps” R. Biswas, K.-M. Ho, filed Nov-22-1996, No AL409, ISURF #02216I.

 

PRESS RELEASES

 

DOE Pulse – December 13, 1999- “New crystals for the next millennium”

 

Inquiry Magazine, Ames Laboratory, Fall 1999, “Photonic Frenzy”.

 

Photonics Spectra, Emerging Technologies section, April 1995, “The Black hole of silicon”

 

Electronic Materials Technology News, February 1995, “Photonic band gap crystals are formed”.

 

Inquiry Magazine, Ames Laboratory Spring 1994, “The Spectral Sieve”

 

Optics and Photonic News, March 1994, “Using Microfabrication techniques on photonic band gap structures”

 

DOE Center of Excellence for the Synthesis and Processing of Advanced Materials, Research Highlights 1998, “Light-induced metastability in hydrogenated amorphous silicon”

 

Sandia National Labs/ Research Highlights 1998.

Scientific American Explorations with light. 9/21/98 www.sciam.com/explorations/1998/


REFERENCES

 

External References:   (Other external references available upon request)

 

1.       Dr. Donald R. Hamann

         Head, Surface Physics Research Department

         Lucent Bell Laboratories

         Murray Hill, NJ 07974

         Tel: (908)582-4454;  drh@bell-labs.com

 

2.       Dr. G. Grest

         Sandia National Laboratories, MS 1411

         Albuquerque, NM 87185-1411

         Tel: (505)844-3261;  gsgrest@sandia.gov

 

3.       Prof. S. Wagner

         former Chair, Dept. of Electrical Engineering

         Princeton University, Princeton, NJ 08854

         Tel: (609)258-4631; wagner@princeton.edu

 

4.       Dr. Howard Branz

         Department Head, National Renewable Energy Laboratory

         1617 Cole Blvd, Golden CO

         Tel: (303)384-6694; hbranz@nrel.gov

 

Internal References:

 

1.       Prof. C. M. Soukoulis

         Department of Physics , Iowa State University, Ames, IA 50011

         Tel: (515)294-2816

 

2.       Prof. K. M. Ho

         Department of Physics, Iowa State University, Ames, IA 50011

         Tel: (515)294-1960

 

3.       Prof. V. Dalal

         Dept. of Electrical Engineering and Computer Engineering & MRC

         Iowa State University, Ames, IA 50011.

         Tel: (515)294-1077

 

4.       Prof. A. Chandra

         Engel Professor of Mechanical Engineering,

Iowa State University, Ames, IA 50011.

         Tel: (515)294-4834


 

GRADUATE STUDENTS SUPERVISED

 

1. G. Subramania, presently pursuing Ph.D. in physics at ISU.

2. S. D. Cheng. Antennas on photonic Band Gap Crystals M.S. EE 1995, Ph.D. (98) at ISU

3. I. Kwon, Ph.D. Physics ISU (1993). Postdoctoral Research Associate, Los Alamos Natl. Lab

4. A. Bouchard, B.S. Physics 1988. Her B.S. thesis was one of 6 finalists for 1988 Apker award of the American Physical Society. After Ph.D. in 1993 is Research Scientist, Sandia Natl. Labs.

5.  Grady Daub, summer 2000.

 

MEMBERSHIP OF PH.D. STUDENT COMMITEES:

1. G. Subramania (Physics)  

2. S. D. Cheng (EE) (Ph.D. 1998)

3. S. Gupta (EE) (Ph. D. 1998)

4.  J. Kavanaugh (EE)

5.  I. El-Kady (Physics)

 

POSTDOCTORAL AND VISITING SCIENTISTS SUPERVISED:

(all in amorphous silicon & molecular dynamics area; were supported by external grants)

1. Young-Hee Lee (visiting scientist, S. Korea),  1989-1990

2. Qiming Li (1993-1996)

3. Bicai Pan (Univ of Science and Technology of China, Hefei, China);1997; 2000-present

4. Y.-P. Li (Univ of Science and Technology of China, Hefei, China); 1997-98

5. Y. Ye (Wuhan University); 2000

 

Undergraduate students supervised: Yoke Yoon (1995-96), W. Hermanto (98-99), C. Boeckma (98-99), Hyung-Woong Lee (1999),Z McDanel (2000-01).

 

TEACHING ACTIVITIES:

Teaching assistant undergraduate physics  courses and grader graduate solid state physics 1978-1982 (Cornell University).

Lectured  in  graduate solid state physics,  ISU (1  month),  1997 (PH512)

Lectured Introductory Mechanics 2000 (PH221); (3 weeks)

Conducted graduate seminar course,  PH650B, 1993-1996, Dept. of Physics, ISU

Instructed  thesis research work of students on graduate committees.

 

CITATIONS

 

1993   64 citations including 3 self-citations

1994   97 citations including 22 self-citations



[1] Bold name indicates paper is in the area of electromagnetics and photonics