Welcome to Physics 221

Phy 221 2006S Lecture 1

Lecture 1: Goals

• Explain key points of Syllabus.
• Introduce Units used to express physical quantities.
• Introduce key vector concepts.

Syllabus: Basic Info

• Where do you have to go
 - The Lectures: MWF 8-8:50 9-9:50 10-10:50
 - The Recitations
 - Day: Tuesday at various times and alternate Thursdays: see syllabus
 - Evening: Your instructor will explain the schedule at first meeting
 - The Lab: Every other week
 - no lab first week
 - The Lecturers
 - David Atwood 9-9:50 10-10:50 atwood@iastate.edu
 - Office hours Monday and Wednesday 3-4pm or by appointment
 - Paula Herrera-Siklody 8-8:50 siklody@iastate.edu
 - Office hours Wednesday 9:10am or by appointment
 - Web Page: http://www.public.iastate.edu/~atwood/phy221.html

Evening Exams

• This Course has 2 hour Evening midterm Exams
 - Thursday February 16 8:00pm-10:00pm
 - Thursday March 30 8:00pm-10:00pm
• You need to appear at these times at room assignments TBA
• If you have some problem with these times you need to discuss the issue with Dr. Atwood.
• One makeup midterm at time TBA during dead week.
• You may write the midterm if miss a midterm. Provided you have obtain approval from Dr. Atwood.
• Inform Dr. Atwood ASAP when you miss a midterm.
 - If you missed a midterm because of illness, inform Dr. Atwood the day of the midterm or the day after
 - If you know in advance you need to miss a midterm, inform Dr. Atwood in advance
• Exam Aids: On the midterm and final exams you can use the following aids:
 - A calculator
 - An "Aid Sheet"- a single 8½ × 11 page of notes (can write on both sides)

WebCT

• This course extensively uses WebCT for:
 - Some assignments:
 - Homework due Thursday
 - Preflights due MWF both at 8am.
 - View your grades
 - Communication: Solutions; discussions; slides
• All students are required to use WebCT
• Your ISU NetID and Password allows access to WebCT
• You should be able to log in within 2 days of registration in the course.
• Please check login this week (see web page for details) and do non-graded sample quiz titled "do this quiz first"
• If you are not registered on WebCT, eg due to enrolment trouble or any other reason, send Dr. Atwood an email with your ISU NetID, Section# and Lab# (if known). He will put you in by hand.
 (atwood@iastate.edu)

Goals of Course

Conceptual Understanding: More than just learning a few equations
• ACTs
• Recitation activities
• Problems

- Introduction to Classical Physics
 - The laws of Motion
 - Working with Laws of motion
 - Conservation Laws
 - Some Forces of Nature
 - Gravitation
 - Electric Force
 - Application to Electrical circuits

Key Scientific and Engineering Skills
• Problem Solving
• Scientific Communication
Assignments

- **Reading Assignments:** Do them
- **Course:**
 - To help you with the reading assignments, there is a short "preflight" due at 8am on lecture days starting with Lecture 3 (Jan 13). Preflights for lectures 3-5 are ungraded. For prefights you have only one try.
 - Each Thursday starting Jan 12 there is a longer WebCT homework assignment. The Jan 12 assignment is ungraded.
 - Each Tuesday starting Jan 17 there is a written assignment due to your recitation instructor at the beginning of recitation. Assignments are posted on WebCT two weeks before due date.
 - On Tuesday recitations starting Jan 17 there is a 20 min quiz.
 - On Thursday recitations there is a "Group Problem Solving" exercise.
- **Lab**
 - The prelab in your lab manual is due to your lab instructor before the lab.
 - Your lab instructor will send you away if you don't have your prelab.
 - Exception: for first lab fill out "prelab 0" and hand it in to your instructor
 - The first lab has a post-lab exercise instead of a prelab exercise.
 - Therefore for the second lab you need to bring the prelab for that lab and the post-lab for the first lab.
- **Lab Report**
 - To be handed in at the end of the lab period

Lab Waiver

- If you are repeating this course but have previously successfully completed the lab portion I suggest you

Get a Lab Waiver

- This will exempt you from having to do the labs this time around.
- Forms are available from Deb Schmidt in Physics Room 12.
- Please double check a few weeks later to ensure that your lab waiver is approved.

Grading

<table>
<thead>
<tr>
<th>Item</th>
<th>Normal</th>
<th>Lab Waiver</th>
<th>Grading Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Exam</td>
<td>270</td>
<td>270</td>
<td>>800 >A-</td>
</tr>
<tr>
<td>2 Midterms</td>
<td>370</td>
<td>370</td>
<td>>700 >B-</td>
</tr>
<tr>
<td>WebCT Homework</td>
<td>40</td>
<td>55</td>
<td>>500 >C-</td>
</tr>
<tr>
<td>Preflights</td>
<td>40</td>
<td>55</td>
<td>>500 >D-</td>
</tr>
<tr>
<td>Recitation Quizzes</td>
<td>50</td>
<td>90</td>
<td><500 F</td>
</tr>
<tr>
<td>Written Homework</td>
<td>70</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Group Problems</td>
<td>30</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Labs</td>
<td>70</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

![Grading Scale](image)

Basic Letter Grade Thresholds:

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>D-</th>
<th>C-</th>
<th>B-</th>
<th>A-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>700</td>
<td>800</td>
</tr>
</tbody>
</table>

Notes:
- Grading is absolute (except for a small per TA adjustment of Written assignments, quizzes, and labs).
- We will not raise the grade thresholds but may lower them if necessary.
- About 16% of final exam consists of lab questions. All students, even those with lab waivers, are responsible for doing these questions.
- Please frequently check your grades for accuracy. In particular during Week 9 double check grades for assignments due before Feb. 24. After Week 9 those grades will be locked in. Likewise during week 15 double check grades for assignments due before April 14.

Regardless of your grade, you will fail if...

- Any laboratory has not been satisfactorily completed (see lab sheet handed out first recitation)
- The student has engaged in any form of academic dishonesty.

Assistance

- The Help Room located in room B54.
 - Starts operation Jan. 18 at 9am.
 - Schedule posted on door and on WebCT.
 - To get more attention, go there during offpeak hours.
- Useful Material and announcements will be posted on WebCT.
 - There is also a Discussion Board.
- Supplemental Instruction will be available and announced when organized.
- The Dean of Students Office: Academic Success Center
 - http://www.dso.iastate.edu/dept/asc/tutoring.htm
 - matches students or groups of students with advanced students for tutoring at a modest fee.
Miscellaneous

- Students with SAAR forms need to file them with Dr. Atwood during the first two weeks of class or as soon as possible after the form is issued.
- The "University Physics, Student Solutions Manual" contains solutions to some of the back of chapter problems. Working through problems is an excellent method to study. On WebCT I list a number of additional sources of problems that you might find useful.

Units

- In physics we need to describe the real world so a system of units is required.
- Scientists and engineers around the world use the SI system.
- The metric system based on SI is used for conventional measures in all countries aside from the USA.

This is the system we will use in this course.

Basis Units

- Three basic units of SI with English system equivalents are the following (four others are also defined):
 - Length: The meter (1 m = 3.281 ft)
 - Mass: The kilogram (1kg = 0.06585 lb)
 - Time: The second (same as English system)
- Some other kinds of units can be expanded as products or ratios of these units. For example:
 - Unit of speed m/s
 - The 'derived' unit for force (Newton) is 1N = 1 kg m/s²
 - Additional abbreviations are sometimes introduced as a short form for combinations of basic units, for example the Newton (N) above.

Multiples of Units

<table>
<thead>
<tr>
<th>Power of 10</th>
<th>Prefix Symbol</th>
<th>Formal conversion of units:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^24</td>
<td>Yotta-</td>
<td>Multiply by the appropriate representation of 1 to cancel the unwanted units away:</td>
</tr>
<tr>
<td>10^21</td>
<td>Zetta-</td>
<td>-eg. convert 10 mi/hr into m/s</td>
</tr>
<tr>
<td>10^18</td>
<td>Exa-</td>
<td>10 mi/1 hr = 10 (mi/1 hr) * (1609m/1mi)</td>
</tr>
<tr>
<td>10^15</td>
<td>Peta-</td>
<td>= (1609 m)/(3600s)</td>
</tr>
<tr>
<td>10^12</td>
<td>Tera-</td>
<td>s / hr</td>
</tr>
<tr>
<td>10^9</td>
<td>Giga-</td>
<td>eg. 1 kilometer = 1km = (1000m) / (1000m)</td>
</tr>
<tr>
<td>10^6</td>
<td>Mega-</td>
<td>1m</td>
</tr>
<tr>
<td>10^3</td>
<td>Kilo-</td>
<td>1m</td>
</tr>
<tr>
<td>10^-2</td>
<td>Centi-</td>
<td>1m</td>
</tr>
<tr>
<td>10^-3</td>
<td>Milli-</td>
<td>1m</td>
</tr>
<tr>
<td>10^-6</td>
<td>Micro-</td>
<td>1m</td>
</tr>
<tr>
<td>10^-9</td>
<td>Nano-</td>
<td>1m</td>
</tr>
<tr>
<td>10^-12</td>
<td>Pico-</td>
<td>1m</td>
</tr>
<tr>
<td>10^-15</td>
<td>Femto-</td>
<td>1m</td>
</tr>
<tr>
<td>10^-18</td>
<td>Atto-</td>
<td>1m</td>
</tr>
<tr>
<td>10^-21</td>
<td>Zepto-</td>
<td>1m</td>
</tr>
<tr>
<td>10^-24</td>
<td>Yocto-</td>
<td>1m</td>
</tr>
</tbody>
</table>

Consistency of Equations

- If A=B then A and B must have the same combination of units (dimensionality).

 - For example
 \[(\text{distance}) = (\text{speed})(\text{time})\]
 \[\left[\text{m} \right] = \left[\left(\text{m} / \text{s} \right) \right] \left[\text{s} \right] \]

 - The famous equation
 \[E=mc^2\]
 \[\left(\text{kg} \right) \left[\text{m} \right] \left[\text{s} \right] \]
 \[\left(\text{kg} \right) \left(\text{m} \right) \]
Location in Space

- To locate an object in space we need to establish a coordinate system with an origin and axes.
- Points are located by giving their x and y (and z) coordinates.

A vector describes a displacement or from one point to another.
The components of the vector describe the displacement in the x and y direction.
Two vectors are parallel if they describe the same displacement even if that displacement begins at different points.

Vector Addition

Geometrically: Parallel transport the tail of B to the head of A. The sum goes from the tail of A to the head of B.

Note: This construction only works if head of A is at the tail of B. Otherwise you need to move B to make that true

Algebraically: Add the components

Vector addition is commutative and associative