Hierarchical models for spatial data

Based on the book by Banerjee, Carlin and Gelfand *Hierarchical Modeling and Analysis for Spatial Data*, 2004. We focus on Chapters 1, 2 and 5.

- Geo-referenced data arise in agriculture, climatology, economics, epidemiology, transportation and many other areas.

- What does geo-referenced mean? In a nutshell, we know the geographic location at which an observation was collected.

- Why does it matter? Sometimes, relative location can provide information about an outcome beyond that provided by covariates.
Models for spatial data (cont’d)

• Example: infant mortality is typically higher in high poverty areas. Even after incorporating poverty as a covariate, residuals may still be spatially correlated due to other factors such as nearness to pollution sites, distance to pre and post-natal care centers, etc.

• Often data are also collected over time, so models that include spatial and temporal correlations of outcomes are needed.

• We focus on spatial, rather than spatio-temporal models.

• We also focus on models for univariate rather than multivariate outcomes.
Types of spatial data

• **Point-referenced data**: $Y(s)$ a random outcome (perhaps vector-valued) at location s, where s varies continuously over some region D. The location s is typically two-dimensional (latitude and longitude) but may also include altitude. Known as geostatistical data.

• **Areal data**: outcome Y_i is an aggregate value over an areal unit with well-defined boundaries. Here, D is divided into a finite collection of areal units. Known as lattice data even though lattices can be irregular.

• **Point-pattern data**: Outcome $Y(s)$ is the occurrence or not of an event and locations s are random. Example: locations of trees of a species in a forest or addresses of persons with a particular disease. Interest is often in deciding whether points occur independently in space or whether there is clustering.
Types of spatial data (cont’d)

- **Marked point process data**: If covariate information is available we talk about a marked point process. Covariate value at each site marks the site as belonging to a certain covariate batch or group.

- **Combinations**: e.g. ozone daily levels collected in monitoring stations for which we know the precise location, and number of children in a zip code reporting to the ER with respiratory problems on that day. Require data re-alignment so that outcomes and covariates obtained at different spatial resolutions can be combined in a model.
Models for point-level data

The basics

• Location index s varies continuously over region D.

• We often assume that the covariance between two observations at locations s_i and s_j depends only on the distance d_{ij} between the points.

• The spatial covariance is often modeled as exponential:

$$\text{Cov} (Y(s_i), Y(s_{i'})) = C(d_{ii'}) = \sigma^2 e^{-\phi d_{ii'}},$$

where $(\sigma^2, \phi) > 0$ are the partial sill and decay parameters, respectively.

• Covariogram: a plot of $C(d_{ii'})$ against $d_{ii'}$.

• For $i = i'$, $d_{ii'} = 0$ and $C(d_{ii'}) = \text{var}(Y(s_i))$.

• Sometimes, $\text{var}(Y(s_i)) = \tau^2 + \sigma^2$, for τ^2 the nugget effect and $\tau^2 + \sigma^2$ the sill.
Models for point-level data (cont’d)

Covariance structure

• Suppose that outcomes are normally distributed and that we choose an exponential model for the covariance matrix. Then:

\[Y|\mu, \theta \sim N(\mu, \Sigma(\theta)), \]

with

\[Y = \{Y(s_1), Y(s_2), ..., Y(s_n)\} \]

\[\Sigma(\theta)_{ii'} = \text{cov}(Y(s_i), Y(s_{i'})) \]

\[\theta = (\tau^2, \sigma^2, \phi). \]

• Then

\[\Sigma(\theta)_{ii'} = \sigma^2 \exp(-\phi d_{ii'}) + \tau^2 I_{i=i'}, \]

with \((\tau^2, \sigma^2, \phi) > 0.\)

• This is an example of an isotropic covariance function: the spatial correlation is only a function of \(d.\)
Models for point-level data, details

- Basic model:

\[Y(s) = \mu(s) + w(s) + e(s), \]

where \(\mu(s) = x'(s)\beta \) and the residual is divided into two components:

- \(w(s) \) is a realization of a zero-centered stationary Gaussian process and \(e(s) \) is uncorrelated pure error.
- The \(w(s) \) are functions of the partial sill \(\sigma^2 \) and decay \(\phi \) parameters.
- The \(e(s) \) introduces the nugget effect \(\tau^2 \).
- \(\tau^2 \) interpreted as pure sampling variability or as microscale variability, i.e., spatial variability at distances smaller than the distance between two outcomes: the \(e(s) \) are sometimes viewed as spatial processes with rapid decay.
The variogram and semivariogram

• A spatial process is said to be:

 – Strictly stationary if distributions of $Y(s)$ and $Y(s + h)$ are equal, for h the distance.

 – Weakly stationary if $\mu(s) = \mu$ and $Cov(Y(s), Y(s + h)) = C(h)$.

 – Intrinsically stationary if

$$E[Y(s + h) - Y(s)] = 0, \text{ and } E[Y(s + h) - Y(s)]^2 = Var[Y(s + h) - Y(s)] = 2\gamma(h),$$

defined for differences and depending only on distance.

• $2\gamma(h)$ is the variogram and $\gamma(h)$ is the semivariogram

• The specific form of the semivariogram will depend on the assumptions of the model.
Stationarity

• Strict stationarity implies weak stationarity but the converse is not true except in Gaussian processes.

• Weak stationarity implies intrinsic stationarity, but the converse is not true in general.

• Notice that intrinsic stationarity is defined on the differences between outcomes at two locations and thus says nothing about the joint distribution of outcomes.
Semivariogram (cont’d)

• If $\gamma(h)$ depends on h only through its length $||h||$, then the spatial process is isotropic. Else it is anisotropic.

• There are many choices for isotropic models. The exponential model is popular and has good properties. For $t = ||h||$:

$$\gamma(t) = \tau^2 + \sigma^2(1 - \exp(-\phi t)) \text{ if } t > 0,$$

$$= 0 \text{ otherwise.}$$

• See figures, page 24.

• The powered exponential model has an extra parameter for smoothness:

$$\gamma(t) = \tau^2 + \sigma^2(1 - \exp(-\phi t^\kappa)) \text{ if } t > 0$$

• Another popular choice is the Gaussian variogram model, equal to the exponential except for the exponent term, that is $\exp(-\phi^2 t^2))$.

10
Semivariogram (cont’d)

- Fitting of the variogram has been traditionally done ”by eye”:
 - Plot an empirical estimate of the variogram akin to the sample variance estimate or the autocorrelation function in time series
 - Choose a theoretical functional form to fit the empirical γ
 - Choose values for (τ^2, σ^2, ϕ) that fit the data well.

- If a distribution for the outcomes is assumed and a functional form for the variogram is chosen, parameter estimates can be estimated via some likelihood-based method.

- Of course, we can also be Bayesians.
Point-level data (cont’d)

- For point-referenced data, frequentists focus on spatial prediction using kriging.
- Problem: given observations \(\{Y(s_1), ..., Y(s_n)\} \), how do we predict \(Y(s_o) \) at a new site \(s_o \)?
- Consider the model

\[
Y = X\beta + \epsilon, \quad \text{where } \epsilon \sim N(0, \Sigma),
\]

and where

\[
\Sigma = \sigma^2 H(\phi) + \tau^2 I.
\]

Here, \(H(\phi)_{ii'} = \rho(\phi, d_{ii'}) \).

- Kriging consists in finding a function \(f(y) \) of the observations that minimizes the MSE of prediction

\[
Q = E[(Y(s_o) - f(y))^2 | y].
\]
Classical kriging (cont’d)

• (Not a surprising!) Result: \(f(y) \) that minimizes \(Q \) is the conditional mean of \(Y(s_0) \) given observations \(y \) (see pages 50-52 for proof):

\[
E[Y(s_o)|y] = x_o' \hat{\beta} + \hat{\gamma}' \hat{\Sigma}^{-1}(y - X\hat{\beta})
\]

\[
Var[Y(s_o)|y] = \hat{\sigma}^2 + \hat{\tau}^2 - \hat{\gamma}' \hat{\Sigma}^{-1} \hat{\gamma},
\]

where

\[
\hat{\gamma} = (\hat{\sigma}^2 \rho(\hat{\phi}, d_{o1}), ..., \hat{\sigma}^2 \rho(\hat{\phi}, d_{on}))
\]

\[
\hat{\beta} = (X'\hat{\Sigma}^{-1}X)^{-1}X'\hat{\Sigma}^{-1}y
\]

\[
\hat{\Sigma} = \hat{\sigma}^2 H(\hat{\phi}).
\]

• Solution assumes that we have observed the covariates \(x_o \) at the new site.

• If not, in the classical framework \(Y(s_o), x_o \) are jointly estimated using an EM-type iterative algorithm.
Bayesian methods for estimation

• The Gaussian isotropic kriging model is just a general linear model similar to those in Chapter 15 of textbook.

• Just need to define the appropriate covariance structure.

• For an exponential covariance structure with a nugget effect, parameters to be estimated are $\theta = (\beta, \sigma^2, \tau^2, \phi)$.

• Steps:
 – Choose priors and define sampling distribution
 – Obtain posterior for all parameters $p(\theta|y)$
 – Bayesian kriging: get posterior predictive distribution for outcome at new location $p(y_o|y, X, x_o)$.
Bayesian methods (cont’d)

• Sampling distribution (marginal data model)

\[y|\theta \sim N(X\beta, \sigma^2H(\phi) + \tau^2I) \]

• Priors: typically chosen so that parameters are independent a priori.

• As in the linear model:

 – Non-informative prior for \(\beta \) is uniform or can use a normal prior too.

 – Conjugate priors for variances \(\sigma^2, \tau^2 \) are inverse gamma priors.

• For \(\phi \), appropriate prior depends on covariance model.

 For simple exponential where

 \[\rho(s_i - s_j; \phi) = \exp(-\phi||s_i - s_j||) \],

 a Gamma prior can be a good choice.

• Be cautious with improper priors for anything but \(\beta \).
Hierarchical representation of model

- Hierarchical model representation: first condition on the spatial random effects \(W = \{w(s_1), ..., w(s_n)\} \):

\[
\begin{align*}
y | \theta, W & \sim N(X\beta + W, \tau^2 I) \\
W | \phi, \sigma^2 & \sim N(0, \sigma^2 H(\phi)).
\end{align*}
\]

- Model specification is then completed by choosing priors for \(\beta, \tau^2 \) and for \(\phi, \sigma^2 \) (hyperparameters).

- Note that hierarchical model has \(n \) more parameters (the \(w(s_i) \)) than the marginal model.

- Computation with the marginal model preferable because \(\sigma^2 H(\phi) + \tau^2 I \) tends to be better behaved than \(\sigma^2 H(\phi) \) at small distances.
Estimation of spatial surface $W|y$

- Interest is sometimes on estimating the spatial surface using $p(W|y)$.
- If marginal model is fitted, we can still get marginal posterior for W as
 \[
p(W|y) = \int p(W|\sigma^2, \phi)p(\sigma^2, \phi|y)d\sigma^2 d\phi.
 \]
- Given draws $(\sigma^2(g), \phi(g))$ from the Gibbs sampler on the marginal model, we can generate W from
 \[
p(W|\sigma^2(g), \phi(g)) = N(0, \sigma^2(g)H(\phi(g))).
 \]
- Analytical marginalization over W is possible only if model has Gaussian form.
Bayesian kriging

• Let $Y_o = Y(s_o)$ and $x_o = x(s_o)$. Kriging is accomplished by obtaining the posterior predictive distribution

$$p(y_o|x_o, X, y) = \int p(y_o, \theta|y, X, x_o)d\theta$$

$$= \int p(y_o|\theta, y, x_o)p(\theta|y, X)d\theta.$$

• Since (Y_o, Y) are jointly multivariate normal (see expressions 2.18 and 2.19 on page 51), then $p(y_o|\theta, y, x_o)$ is a conditional normal distribution.
Bayesian kriging (cont’d)

• Given MCMC draws of the parameters \((\theta^{(1)}, \ldots, \theta^{(G)})\) from the posterior distribution \(p(\theta|y, X)\), we draw values \(y_o^{(g)}\) for each \(\theta^{(g)}\) as

\[y_o^{(g)} \sim p(y_o|\theta^{(g)}, y, x_o). \]

• Draws \(\{y_o^{(1)}, y_o^{(2)}, \ldots, y_o^{(G)}\}\) are a sample from the posterior predictive distribution of the outcome at the new location \(s_o\).

• To predict \(Y\) at a set of \(m\) new locations \(s_{o1}, \ldots, s_{om}\), it is best to do joint prediction to be able to estimate the posterior association among \(m\) predictions.

• Beware of joint prediction at many new locations with WinBUGS. It can take forever.
Kriging example from WinBugs

- Data were first published by Davis (1973) and consist of heights at 52 locations in a 310-foot square area.
- We have 52 \(s = (x, y) \) coordinates and outcomes (heights).
- Unit of distance is 50 feet and unit of elevation is 10 feet.
- The model is
 \[
 \text{height} = \beta + \epsilon, \quad \text{where } \epsilon \sim \text{N}(0, \Sigma),
 \]
 and where
 \[
 \Sigma = \sigma^2 H(\phi).
 \]
- Here, \(H(\phi)_{ij} = \rho(s_i - s_j; \phi) = \exp(-\phi||s_i - s_j||^\kappa) \).
- Priors on \((\beta, \phi, \kappa)\).
- We predict elevations at 225 new locations.