Mixture models (Ch. 16)

• Using a mixture of distributions to model a random variable provides great flexibility.

• When?
 – When the mixture, even if not directly justifiable by the problem, provides a mean to model different zones of support of the true distribution.
 – When population of sampling units consists of several sub-populations, and within each population, a simple model applies.

• Example:
 \[p(y_i | \theta, \lambda) = \lambda_1 f(y_i | \theta_1) + \lambda_2 f(y_i | \theta_2) + \lambda_3 f(y_i | \theta_3) \]
 is a three-component mixture. Here:
 – \(\lambda_m \in [0, 1] \) and \(\sum_{m=1}^{3} \lambda_m = 1 \).

Bayesian estimation

• Suppose that the mixture components \(f(y_m | \theta_m) \) are all from the exponential family
 \[f(y | \theta) = h(y) \exp\{\theta y - \eta(\theta)\}. \]

• A conjugate prior for \(\theta \) is
 \[p(\theta | \tau) \propto \exp\{\theta - \tau \eta(\theta)\}. \]

• The conjugate prior for the vector of component probabilities \(\{\lambda_1, ..., \lambda_M\} \) is the Dirichlet with parameters \(\{\alpha_1, ..., \alpha_M\} \) with density
 \[p(\lambda_1, ..., \lambda_M) \propto \lambda_1^{\alpha_1-1} ... \lambda_M^{\alpha_M-1}. \]
 (for a two-component mixture, the Dirichlet reduces to a Beta).
Bayesian estimation (cont’d)

• The posterior distribution of $(\lambda, \theta) = (\lambda_1, ..., \lambda_M, \theta_1, ..., \theta_M)$ is

 $$p(\lambda, \theta) \propto p(\lambda) \prod_{m=1}^{M} p(\theta_m|\tau_m) \prod_{i=1}^{n} \left(\sum_{m=1}^{M} \lambda_m f(y_i|\theta_m) \right).$$

• Each θ_m has its own prior with parameters τ_m (and perhaps also depending on some constant x_m).

• The expression for the posterior involves Mn terms of the form

 $$\prod_{m} \lambda_m^{n_m+n_m-1} p(\theta_m|n_m\bar{y}_m, \tau_m + n_m),$$

 where n_m is the size of component m and \bar{y}_m is the sample mean in component m.

• For $M = 3$ and $n = 40$, direct computation with the posterior requires the evaluation of $1.2E + 19$ terms, clearly impossible.

• We now introduce additional parameters into the model to permit the implementation of the Gibbs sampler.

Mixture models - missing data

• Consider unobserved indicators ζ_{im} where

 $-\zeta_{im} = 1$ if y_i was generated by component m
 $\zeta_{im} = 0$ otherwise

• Given the vector z for y_i, it is easy to estimate θ_m. E.g., in normal mixture, MLE of μ_1 is \bar{y}_1, where the mean is taken over the y_i for which $\zeta_{i1} = 1$.

• Indicators ζ introduce hierarchy in the model, useful for computation with EM (for posterior modes) and Gibbs (for posterior distributions).

Setting up a mixture model

• We consider an M component mixture model (finite mixture model)

• We do not know which mixture component underlies each particular observation

• Any information that permits classifying observations to components should be included in the model (see the schizofrenics example later)

• Typically assume that all mixture components are from the same parametric family (e.g., the normal) but with different parameter values

• Likelihood:

 $$p(y_i|\theta, \lambda) = \lambda_1 f(y_i|\theta_1) + \lambda_2 f(y_i|\theta_2) + ... + \lambda_M f(y_i|\theta_M)$$

Setting up a mixture model

• Introduce unobserved indicator variables ζ_m where

 $\zeta_m = 1$ if y_i comes from component m, and is zero otherwise

• Given λ,

 $$p(\zeta|\lambda) \sim \text{Multinomial}(1; \lambda_1, ..., \lambda_M)$$

so that

$$p(\zeta|\lambda) \propto \prod_{m=1}^{M} \lambda_{m}^{\zeta_{im}}.$$

Then $E(\zeta_{im}) = \lambda_m$. Mixture parameters λ are viewed as hyperparameters indexing the distribution of ζ.
Setting up a mixture model

- Joint “complete data” distribution conditional on unknown parameters is:
 \[p(y, \zeta | \theta, \lambda) = p(\zeta | \lambda)p(y | \zeta, \theta) = \prod_{i=1}^{n} \prod_{m=1}^{M} \lambda_{m} f(y_{i} | \theta_{m}) \zeta_{im} \]
 with exactly one \(\zeta_{im} = 1 \) for each \(i \).
- We assume that \(M \) is known, but fit of models with different \(M \) should be tested (see later)
- When \(M \) unknown, estimation gets complicated: unknown number of parameters to estimate! Can be done using reversible jump MCMC methods (jumps are from different dimensional parameter spaces)
- If component is known for some observations, just divide \(p(y, \zeta | \theta, \lambda) \) into two parts. Obs with known membership add a single factor to product with a known value for \(\zeta_{i} \).

Priors for mixture models

- Typically, \(p(\theta, \lambda) = p(\theta)p(\lambda) \)
- If \(\zeta \sim \text{Mult}(\lambda) \) then conjugate for \(\lambda \) is Dirichlet:
 \[p(\lambda | \alpha) \propto \lambda_{m}^{\alpha_{m} - 1} \]
 where
 - \(E(\lambda_{k}) = \alpha_{k}/\Sigma_{m} \alpha_{m} \) so that relative size of \(\alpha_{k} \) is prior “guess” for \(\lambda_{k} \)
 - “Strength” of prior belief proportional to \(\Sigma_{m} \alpha_{m} \)
- For all other parameters, consider some \(p(\theta) \)
- Need to be careful with improper prior distributions:
 - Posterior improper when \(\alpha_{k} = 0 \) unless data strongly supports presence of \(M \) mixture component
 - In mixture of two normals, posterior improper for \((\log \sigma_{1}, \log \sigma_{2}) \sim 1 \).

Computation in mixture models

- Exploit hierarchical structure introduced by missing data.
- Crude estimates:
 (a) Use clustering or other graphical techniques to assign obs to groups
 (b) Get crude estimates of component parameters using tentative grouping of obs
- Modes of posterior using EM:
 - Estimate parameters of mixture components averaging over indicator
 - Complete log-likelihood is
 \[\log p(y, \zeta | \theta, \lambda) = \sum_{i} \Sigma_{m} \zeta_{im} \log[\lambda_{m} f(y_{i} | \theta_{m})] \]
 - In E-step, find \(E(\zeta_{im}) \) conditional on \((\theta^{(\text{old})}, \lambda^{(\text{old})}) \).
 - In finite mixtures, E-step is easy and can be implemented using Bayes rule (see later)
Computation in mixture models

- Posterior distributions using Gibbs alternates between two steps:
 - draws from conditional for indicators given parameters is multinomial draws
 - draws from conditional of parameters given indicators typically easy, and conjugate priors help
- Given indicators, parameters may be arranged hierarchically
- For inference about parameters, can ignore indicators
- Posterior distributions of ζ_{im} contain information about likely components from which each observation is drawn.

Gibbs sampling

- If conjugate priors are used, the simulation is rather trivial.
- Step 1: Sample the θ_m from their conditional distributions. For a normal mixture with conjugate priors, the (μ_m, σ_m^2) parameters are sampled from univariate normal and inverted gamma distributions, respectively.
- Step 2: Sample the vector of λs from a Dirichlet with parameters $(\alpha_m + n_m)$.
- Step 3: Simulate $\zeta_i | y, \lambda_1, \ldots, \lambda_M, \theta_1, \ldots, \theta_M = \sum_{m=1}^{M} p_{im} I_{\zeta_i = m}$, where $i = 1, \ldots, n$ and

$$p_{ij} = \frac{\lambda_j f(y_i | \theta_j)}{\sum_m \lambda_m f(y_i | \theta_m)}.$$

Gibbs sampling (cont’d)

- Even though the chains are theoretically irreducible, the Gibbs sampler can get ‘trapped’ if one of the components in the mixture receives very few observations in an iteration.
- Non-informative priors for θ_m lead to identifiability problems. Intuitively, if each θ_m has its own prior parameters and few observations are allocated to group m, there is no information at all to estimate θ_m. The sampler gets trapped in the local mode corresponding to component m.
- Vague but proper priors do not work either.
- How to avoid this problem? ‘Link’ the θ_m across groups by reparameterizing. For example, for a two-component normal, Mengersen and Robert (1995) proposed

$$p(y | \lambda, \theta) \propto \lambda N(\mu, \tau^2) + (1 - \lambda) N(\mu + \tau \theta, \tau^2 \sigma^2)$$

where $\sigma < 1$.
- The ‘extra’ parameters represent differences in mean and variance for the second component relative to the first. Notice that this reparametrization introduces a natural ‘ordering’ that helps resolve the unidentifiability problems.