Mixture models (Ch. 16)

• Using a mixture of distributions to model a random variable provides great flexibility.

• When?
 – When the mixture, even if not directly justifiable by the problem, provides a mean to model different zones of support of the true distribution.
 – When population of sampling units consists of several sub-populations, and within each population, a simple model applies.

• Example:

\[
p(y_i|\theta, \lambda) = \lambda_1 f(y_i|\theta_1) + \lambda_2 f(y_i|\theta_2) + \lambda_3 f(y_i|\theta_3)
\]

is a three-component mixture. Here:

– \(\lambda_m \in [0, 1]\) and \(\sum_{m=1}^{3} \lambda_m = 1\).

– \(\theta_m\) is the (vector) of parameters of each component distribution. For example, if mixture is normal mixture, then \(\theta_m = (\mu_m, \sigma_m^2)\).
Mixture models (cont’d)

- Of interest is the estimation of component probabilities \(\lambda_m \) and parameters of mixture components \(\theta_m \).
- The probabilities indicate the proportion of the sample that can be expected to be generated by each of the mixture components.
- Estimation within a classical context is problematic. In a two-Gaussian mixture and for any \(n \), the MLE does not exist because there is a non-zero probability that one of the two components does not contribute any of the observations \(y_i \) and thus the sample has no information about it. (Identifiability problem.)
- An ML can be derived when the likelihood is bounded, but often, likelihood is ‘flat’ at the MLE.
- Bayesian estimators in mixture models are always well-defined as long as priors are proper.

Bayesian estimation

- Suppose that the mixture components \(f(y_m|\theta_m) \) are all from the exponential family
 \[f(y|\theta) = h(y) \exp\{\theta y - \eta(\theta)\}. \]
- A conjugate prior for \(\theta \) is
 \[p(\theta|\tau) \propto \exp\{\theta - \tau\eta(\theta)\}. \]
- The conjugate prior for the vector of component probabilities \(\{\lambda_1, ..., \lambda_M\} \) is the Dirichlet with parameters \((\alpha_1, ..., \alpha_M) \) with density
 \[p(\lambda_1, ..., \lambda_M) \propto \lambda_1^{\alpha_1-1}...\lambda_M^{\alpha_M-1}. \]
 (for a two-component mixture, the Dirichlet reduces to a Beta).
Bayesian estimation (cont’d)

- The posterior distribution of \((\lambda, \theta) = (\lambda_1, ..., \lambda_M, \theta_1, ..., \theta_M)\) is

\[
p(\lambda, \theta) \propto p(\lambda) \prod_{m=1}^{M} p(\theta_m | \tau_m) \prod_{i=1}^{n} \left(\sum_{m=1}^{M} \lambda_m f(y_i | \theta_m) \right).
\]

- Each \(\theta_m\) has its own prior with parameters \(\tau_m\) (and perhaps also depending on some constant \(x_m\)).

- The expression for the posterior involves \(M^n\) terms of the form

\[
\prod_{m} \lambda_m^{\alpha_m} \cdot \lambda_m^{-1} p(\theta_m | n_m \bar{y}_m, \tau_m + n_m),
\]

where \(n_m\) is the size of component \(m\) and \(\bar{y}_m\) is the sample mean in component \(m\).

- For \(M = 3\) and \(n = 40\), direct computation with the posterior requires the evaluation of \(1.2E + 19\) terms, clearly impossible.

- We now introduce additional parameters into the model to permit the implementation of the Gibbs sampler.

Mixture models - missing data

- Consider unobserved indicators \(\zeta_{im}\) where

\[
\begin{align*}
\zeta_{im} = 1 & \text{ if } y_i \text{ was generated by component } m \\
\zeta_{im} = 0 & \text{ otherwise}
\end{align*}
\]

- Given the vector \(\zeta_i\) for \(y_i\), it is easy to estimate \(\theta_m\). E.g., in normal mixture, MLE of \(\mu_1\) is \(\bar{y}_1\), where the mean is taken over the \(y_i\) for which \(\zeta_{i1} = 1\).

- Indicators \(\zeta\) introduce hierarchy in the model, useful for computation with EM (for posterior modes) and Gibbs (for posterior distributions).
Setting up a mixture model

- We consider an M component mixture model (finite mixture model)
- We do not know which mixture component underlies each particular observation
- Any information that permits classifying observations to components should be included in the model (see the schizophrenics example later)
- Typically assume that all mixture components are from the same parametric family (e.g., the normal) but with different parameter values
- Likelihood:
 $$p(y_i|\theta, \lambda) = \lambda_1 f(y_i|\theta_1) + \lambda_2 f(y_i|\theta_2) + \ldots + \lambda_M f(y_i|\theta_M)$$

Introduce unobserved indicator variables ζ_{im} where $\zeta_{im} = 1$ if y_i comes from component m, and is zero otherwise

- Given λ,
 $$p(\zeta_i|\lambda) \sim \text{Multinomial}(1; \lambda_1, \ldots, \lambda_M)$$
 so that
 $$p(\zeta_i|\lambda) \propto \prod_{m=1}^M \lambda_{im}.$$

Then $E(\zeta_{im}) = \lambda_m$. Mixture parameters λ are viewed as hyperparameters indexing the distribution of ζ.
Setting up a mixture model

- Joint “complete data” distribution conditional on unknown parameters is:
 \[p(y, \zeta | \theta, \lambda) = p(\zeta | \lambda)p(y | \zeta, \theta) = \prod_{i=1}^{n} \prod_{m=1}^{M} \lambda_{mf}(y_i | \theta_m)^{\zeta_{im}} \]
 with exactly one \(\zeta_{im} = 1 \) for each \(i \).

- We assume that \(M \) is known, but fit of models with different \(M \) should be tested (see later)

- When \(M \) unknown, estimation gets complicated: unknown number of parameters to estimate! Can be done using reversible jump MCMC methods (jumps are from different dimensional parameter spaces)

- If component is known for some observations, just divide \(p(y, \zeta | \theta, \lambda) \) into two parts. Obs with known membership add a single factor to product with a known value for \(\zeta_i \).

Setting up a mixture model

- **Identifiability**: Unless restrictions in \(\theta_m \) are imposed, model is un-identified: same likelihood results even if we permute group labels.

- In two component normal mixture without restriction, computation will result in 50% split of observations between two normals that are mirror images

- Unidentifiability can be resolved by
 - Better defining the parameter space. E.g. in normal mixture can require: \(\mu_1 > \mu_2 > \ldots > \mu_M \)
 - Using informative priors on parameters
Priors for mixture models

• Typically, \(p(\theta, \lambda) = p(\theta)p(\lambda) \)

• If \(\zeta_i \sim \text{Mult}(\lambda) \) then conjugate for \(\lambda \) is Dirichlet:

\[
p(\lambda|\alpha) \propto \prod_{m=1}^{M} \lambda_{m}^{\alpha_{m}-1}
\]

where

- \(E(\lambda_k) = \alpha_k/\Sigma_m \alpha_m \) so that relative size of \(\alpha_k \) is prior “guess” for \(\lambda_k \)
- “Strength” of prior belief proportional to \(\Sigma_m \alpha_m \).

• For all other parameters, consider some \(p(\theta) \)

• Need to be careful with improper prior distributions:

- Posterior improper when \(\alpha_k = 0 \) unless data strongly supports presence of \(M \) mixture component
- In mixture of two normals, posterior improper for \((\log \sigma_1, \log \sigma_2) \sim 1 \).

Computation in mixture models

• Exploit hierarchical structure introduced by missing data.

• Crude estimates:

(a) Use clustering or other graphical techniques to assign obs to groups
(b) Get crude estimates of component parameters using tentative grouping of obs

• Modes of posterior using EM:

- Estimate parameters of mixture components averaging over indicator
- Complete log-likelihood is

\[
\log p(y, \zeta|\theta, \lambda) = \sum_i \sum_m \zeta_{im} \log [\lambda_m f(y_i|\theta_m)]
\]

- In E-step, find \(E(\zeta_{im}) \) conditional on \((\theta^{(\text{old})}, \lambda^{(\text{old})}) \).
- In finite mixtures, E-step is easy and can be implemented using Bayes rule (see later)
Computation in mixture models

- **Posterior distributions** using Gibbs alternates between two steps:
 - draws from conditional for indicators given parameters is multinomial draws
 - draws from conditional of parameters given indicators typically easy, and conjugate priors help
- Given indicators, parameters may be arranged hierarchically
- For inference about parameters, can ignore indicators
- Posterior distributions of ζ_{im} contain information about likely components from which each observation is drawn.

Gibbs sampling

- If conjugate priors are used, the simulation is rather trivial.
- Step 1: Sample the θ_m from their conditional distributions. For a normal mixture with conjugate priors, the (μ_m, σ^2_m) parameters are sampled from univariate normal and inverted gamma distributions, respectively.
- Step 2: Sample the vector of λs from a Dirichlet with parameters $(\alpha_m + n_m)$.
- Step 3: Simulate

$$
\zeta_i | y_i, \lambda_1, ..., \lambda_M, \theta_1, ..., \theta_M = \sum_{m=1}^{M} p_{im} I_{\{\zeta_i = m\}},
$$

where $i = 1, ..., n$ and

$$
p_{ij} = \frac{\lambda_j f(y_i | \theta_j)}{\sum_m \lambda_m f(y_i | \theta_m)}.
$$
Gibbs sampling (cont’d)

- Even though the chains are theoretically irreducible, the Gibbs sampler can get 'trapped' if one of the components in the mixture receives very few observations in an iteration.

- Non-informative priors for \(\theta_m \) lead to identifiability problems. Intuitively, if each \(\theta_m \) has its own prior parameters and few observations are allocated to group \(m \), there is no information at all to estimate \(\theta_m \). The sampler gets trapped in the local mode corresponding to component \(m \).

- Vague but proper priors do not work either.

- How to avoid this problem? 'Link' the \(\theta_m \) across groups by reparameterizing. For example, for a two-component normal, Mengersen and Robert (1995) proposed

\[
p(y|\lambda, \theta) \propto \lambda N(\mu, \tau^2) + (1 - \lambda) N(\mu + \tau\theta, \tau^2\sigma^2)
\]

where \(\sigma < 1 \).

- The 'extra' parameters represent differences in mean and variance for the second component relative to the first. Notice that this reparameterization introduces a natural 'ordering' that helps resolve the unidentifiability problems.