Estimating a population mean

- We use \bar{y} as an estimator of μ. Is it a 'good' estimator?

- An estimator is 'good' if:
 - It is unbiased
 - It has small standard error.

- An estimator is *unbiased* if the mean of its sampling distribution equals the parameter we are trying to estimate.
 - \bar{y} is unbiased for μ because $E(\bar{y}) = \mu_{\bar{y}} = \mu$.

- In English: if we were to draw 100 samples of size n from some population with mean μ, and were to compute \bar{y} in each of the 100 samples, the *average* of those 100 \bar{y} would be close to μ.
Population mean (cont’d)

• Recall that if \(y \sim (\mu, \sigma^2) \), then the sampling distribution of \(\bar{y} \) is \(N(\mu, \sigma^2/n) \).

• As \(n \) increases, \(\sigma^2/n \) decreases: the larger the sample, the more reliable will \(\bar{y} \) be as an estimator of \(\mu \).

• The parameter \(\frac{\sigma}{\sqrt{n}} \) is called standard error of the mean and is estimated by \(S/\sqrt{n} \).

• If \(\bar{y} \sim N(\mu, \sigma^2/n) \) then

\[
\text{Prob}(\bar{y} - 2 \frac{\sigma}{\sqrt{n}} < \mu < \bar{y} + 2 \frac{\sigma}{\sqrt{n}}) \approx 0.95
\]

(exactly equal to 0.95 if we use 1.96 instead of 2).
Confidence intervals

• Since \bar{y} will fall within $\pm 2\sigma/\sqrt{n}$ of the population mean μ approximately 95% of the time, then the interval

$$\bar{y} - 2\frac{\sigma}{\sqrt{n}} \text{ to } \bar{y} + 2\frac{\sigma}{\sqrt{n}}$$

will cover μ about 95% of the time in repeated sampling.

• 100(1-α)% confidence interval for μ:

$$\bar{y} \pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}},$$

where $z_{\alpha/2}$ is the z value with an area equal to $\alpha/2$ to its right (see figure 1.18).
Confidence intervals

• We can construct confidence intervals with any confidence coefficient $(1 - \alpha)$.

• For a 90% confidence interval, use 1.64 instead of 2 (or 1.96 to be precise), because:
 1. $\alpha = 0.10$ and $\alpha/2 = 0.05$
 2. z-value with 0.05 to its right (or 0.95 to its left) is 1.64 from standard normal table.

• For a 99% confidence interval, use 2.58 (or $z_{0.005}$) instead of 2.

• Note: the wider the interval, the higher the confidence that it will cover μ. Thus, a 99% confidence interval for μ will always be wider than a 90% interval.
Confidence intervals (cont’d)

- Example: Attention times given by parents to sets of twin boys during one week (Table 1.9, page 36).

- $n = 50$, $\bar{y} = 20.85$ and $S = 13.41$.

- A 90% CI for the true mean attention time μ is

$$
\bar{y} \pm 1.64 \frac{S}{\sqrt{n}} = 20.85 \pm 1.64 \frac{13.41}{\sqrt{50}} = 20.85 \pm 3.11.
$$

- 95% CI: $\bar{y} \pm 2 \frac{S}{\sqrt{n}} = 20.85 \pm 2 \frac{13.41}{\sqrt{50}} = 20.85 \pm 3.80$.

- 99% CI: $\bar{y} \pm 2.57 \frac{S}{\sqrt{n}} = 20.85 \pm 2.57 \frac{13.41}{\sqrt{50}} = 20.85 \pm 4.88$.
Confidence intervals (cont’d)

• Note that we used the sample standard deviation S in place of the unknown population standard deviation σ to compute the CI.

• This is OK only if n is large enough (more than 30).

• If σ is unknown (as it usually is) and $n < 30$ we compute the CI using $t_{\alpha/2}$ instead of $z_{\alpha/2}$ (Student’s t–table instead of z–table).

• The value $t_{\alpha/2}$ is the upper-tail t–value such that an area equal to $\alpha/2$ lies to its right.
Confidence intervals (cont’d)

• To get the appropriate value out of a \(t \)–table we need:

 1. The degrees of freedom \(= n - 1 \) in this type of applications.
 2. The desired confidence coefficient \((1 - \alpha) \).

• For small \(n \), a \(100(1 - \alpha)\% CI \) for \(\mu \) is

\[
\bar{y} \pm t_{\frac{\alpha}{2}, n-1} \frac{S}{\sqrt{n}}
\]
Confidence intervals (cont’d)

• Example 1.12, page 39: Concentrations of silica in ppm in treated saline water.

• \(n = 5 \) (small!), \(\bar{y} = 239.2 \), \(S = 29.3 \) and \(df = 4 \).

• For a 95% CI for the true silica concentration: \(t_{\frac{0.05}{2},4} = 2.776 \).

• Then, the 95% CI for \(\mu \) is

\[
239.2 \pm 2.776 \frac{29.3}{\sqrt{5}} = 239.2 \pm 36.4.
\]

• If we had wished to obtain a 90% or a 99% CI for the mean, then the corresponding \(t \)–values (from the table) would have been 2.132 and 4.604, respectively (see Table C.2).
Confidence intervals (cont’d)

• Continue with same example, and now ask the following question: what sample size would we have needed if we wished to estimate the true mean silica concentration to within 10 ppm with 95% confidence?

• We wish to know what n we would need if we wished to be able to state that

\[\text{Prob}(\bar{y} - 10 < \mu < \bar{y} + 10) = 0.95. \]

• Above means that

\[t_{0.025,n-1} \frac{S}{\sqrt{n}} = 10. \]

• From expression above, we need to solve for n.
Confidence intervals (cont’d)

• We know that the desired n must be larger than 5 because with $n = 5$ we estimated μ to within 36.4 ppm with 95% confidence.

• We need the following in order to come up with an answer:
 – Assume that S would not change with increased n
 – Approximate a value of $t_{0.025, n-1}$ to be about 2

• Then: