Coefficient of Determination

e The coefficient of determination R? (or sometimes r?) is another
measure of how well the least squares equation

y =bo+ b1x
performs as a predictor of y.

e 1?7 is computed as:

SSyy — SSE _ 8S,, SSE _, SSE

R? =
5Syy SSyy SOy 5Syy

e RR? measures the relative sizes of S5Syy and SSE. The smaller SSE,
the more reliable the predictions obtained from the model.

Stat 328 - Fall 2004 1



Coefficient of Determination (cont’d)

e The higher the R?, the more useful the model.
e RR? takes on values between 0 and 1.

e Essentially, R? tells us how much better we can do in predicting y by
using the model and computing ¢ than by just using the mean y as a
predictor.

e Note that when we use the model and compute ¢y the prediction
depends on x because y = by + byx. Thus, we act as if x contains
information about y.

o |f we just use y to predict y, then we are saying that = does not
contribute information about ¥ and thus our predictions of y do not
depend on z.
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Coefficient of Determination (cont’d)

e More formally:

— 55, measures the deviations of the observations from their mean:
SSyy = .(yi —y)?. If we were to use g to predict y, then SS,,
would measure the variability of the y around their predicted value.

— SSE measures the deviations of observations from their predicted

values: SSE = .(y; — 4:)°.

e If & contributes no information about y, then SS,, and SSE will be
almost identical, because b; =~ 0.

e |f z contributes lots of information about y then SSE is very small.

e Interpretation: R? tells us how much better we do by using the
regression equation rather than just ¢ to predict y.
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Coefficient of Determination - Example

e Consider Tampa sales example. From printout, R? = 0.9453.

e Interpretation: 94% of the variability observed in sale prices can be
explained by assessed values of homes. Thus, the assessed value of the
home contributes a lot of information about the home's sale price.

e We can also find the pieces we need to compute R? by hand in either
JMP or SAS outputs:

— 585,y is called Sum of Squares of Model in SAS and JMP
— SSFE is called Sum of Squares of Error in both SAS and JMP.

e |In Tampa sales example, S5, = 1673142, SSE = 96746 and thus

1673142 — 96746
- 1673142

R? — 0.94.
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Estimation and prediction

e With our regression model, we might wish to do two things:

1. Estimate the mean (or expected) value of y for a given x.
2. Predict the value of a single y given a value of x.

e In both cases, we use the same sample estimator (or predictor):

@:b0+b1x.

e The difference between estimating a mean or predicting a single
observation is in the accuracy with which we can do each of these
two things — the standard errors in each of the two cases are different.
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Estimation and prediction (cont’d)

e The standard deviation of the estimator ¢ of the mean of y for a
certain value of x, say x,, Is

1 (2, — 7)2
0-?3 a O-\/n + ngx ,

— o is the error standard deviation, estimated by RMSE (or S).
— x, is the specific value of = for which we wish to estimate the mean
of the y

where

e 0; is called the standard error of §.

o If we use RMSE in place of o, we obtain an estimate 7.
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Estimation and prediction (cont’d)

e The standard deviation of the estimator § of an individual y—value
given a certain value of z, say z, is

2

1 (xp,—7T)
e “\/1 t T Ss,

o We call o(,_4) the standard error of prediction.

o If we use RMSFE (or S) in place of o, then we have an estimate of the
standard error of prediction, and we denote the estimate by 7(,_g).
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Estimation and prediction - Example

e Consider the Tampa sales example, and refer to the JMP ouput.
From output, RMSE == S = 32.78, and mean assessed price (Z) is
$201.75.

e We wish to estimate the mean price of houses assessed at z, = $320
(in $1,000s) and also compute 04, the standard error of y:

gy = 20.94 + 1.069 x 320 = 363.

e To compute 75 we also need SS;,. We use the computational formula

SSpr = fo —n(z)%
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Estimation and prediction - Example

o To get > . r? we can create a new column in JMP which is equal to
Assvalue squared, and then ask for its sum.

e In Tampa sales example:

SSee =Y a7 —n(z)* = 5,209,570.75 — 92 x 201.75% = 1,464, 889.

)

e An estimate of the standard error of 7 is now:

1 (320 — 201.75)?
e 32.78 | —
9 92~ 1,464,889

—  32.78+/0.01086 + 0.009545
—  4.68.
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Estimation and prediction - Example

e Suppose that now we wish to predict the sale price of a single house
that is appraised at $320,000.

e The point estimate is the same as before: § = 20.94 4+ 1.069 x 320 =
363.

e The standard error of prediction however is computed using the
second formula:
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Estimation and prediction - Example

e We have S (or RMSE), n, (x, —Z)* and SS,, from before, so all we
need to do is

1 (320 — 201.75)?
oo = 32784 /1
(y=9) \/ 92 T 1,464,889

= 32.78v/1 + 0.01086 + 0.009545
= 33.11
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Estimation and prediction - Example

e Note that in Tampa sales example, &(,_;) > 75 (33.11 versus 4.68).

e This is true always: we can estimate a mean value for y for a given z,,
much more accurately than we can predict the value of a single y for
T = Tp.

— In estimating a mean y for z = x,, the only uncertainty arises
because we do not know the true regression line.

— In predicting a single y for x = x,,, we have two uncertainties: the
true regression line plus the expected variability of y—values around
the true line.
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Estimation and prediction - Using JMP

e For each observation in a dataset we can get from JMP (or from SAS):

A

Yy, 09, and also 7, _g).

e In JMP do:

1. Choose Fit Model
2. From Response icon, choose Save Columns and then choose
Predicted Values, Std Error of Predicted, and Std Error of

Individual.
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Estimation and prediction - Using JMP

e A VERY unfortunate thing! JMP calls things different from the
book:

— In book: & is standard error of estimation but in JMP it is standard
error of prediction.
— In book: & (,_g) is standard error of prediction but in JMP it is

standard error of individual.

e SAS calls them the same as the book: standard error of the mean and
standard error of prediction.
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Confidence intervals

e We can compute a 100(1 — )% ClI for the true mean of y at z = x,,.

e We can also compute a 100(1 — )% Cl for true value of a single y
at * = xy,.

e In both cases, the formula is the same as the general formula for a Cl:

estimator £ tg ;o standard error
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Confidence intervals (cont’d)

e The Cl for the true mean of y at x =z, is

Yyt t%,n—QGQ

e The Cl for a true single value of y at x =z, is

§ % tg,n—20(y—9)
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Confidence intervals - Example

e In Tampa sales example, we computed ¢ for = 320 and we also
computed the standard error of the mean of y and the standard error
of a single y at x = 320.

e The 95% CI for the true mean of y at x = 320 is
BNCI = g+ t%,n_g%
= 363 +t1.98 x 4.68 = (354, 372).
e The 95% ClI for the true value of a single y at x = 320 is

95%CI — :g + t%,n—Qé\-(y—@)
— 363+ 1.98 x 33.11 = (297, 429).
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Confidence intervals - Interpretation

e The 95% Cl for the mean sale price of houses assessed at $320,000 is

$354,000 to $372,000. If many houses assessed at about $320,000 go
on the market, we expect that the mean sale price of those houses will
be included within those two values.

e The 95% CI for the sale price of a single house that is assessed at
$320,000 is $297,000 to $429,000. That means that a homeowner who
has a house valued at $320,000 can expect to get between $297,000
and $429,000 if she decides to sell the house.

e Again, notice that it is much more difficult to precisely predict a single
value than it is to predict the mean of many values.

e See Figure 3.25 on page 135 of textbook.
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