Hypothesis testing - Steps

• Steps to do a *two-tailed test* of the hypothesis that $\beta_1 \neq 0$:

1. Set up the hypotheses:

 $H_0 : \beta_1 = 0$
 $H_a : \beta_1 \neq 0$.

2. Compute the test statistic:

 $$t = \frac{b_1 - 0}{\text{Std. error of } b_1} = \frac{b_1}{\hat{\sigma}_{b_1}}$$

3. Read critical value off the $t-$table: $t_{\alpha/2,n-2}$

4. Reach your conclusion: If $|t| > \text{critical value}$ conclude H_a. If $|t| \leq \text{critical value}$, conclude H_0 or *fail to reject* H_0 at level α.
One-tailed hypothesis tests

• We can also test one-sided or one-tailed hypothesis.

• A one-sided hypotheses would be:

\[H_0 : \beta_1 = 0 \]
\[H_a : \beta_1 > 0, \]

or \[H_a : \beta_1 < 0. \]

• Steps are exactly the same, but now the critical value is \(t_{\alpha, n-2} \) (we do not divide \(\alpha \) into 2).

• If the test statistic \(|t|\) is larger than the critical value off the table and we conclude \(H_a \), we would be concluding that \(\beta_1 \) is larger (or smaller, depending on the test we set up) than zero.
Hypothesis testing (cont’d)

• If we wish to test a two-sided hypothesis about β_1 at level α we can also use the $100(1 - \alpha)\%$ confidence interval to do so.

• We will conclude H_a whenever the CI does not include the hypothesized value for β_1 (the value in H_0).

• If the null hypothesis is $H_0 : \beta_1 = 0$, then we will reject the null at level α when the CI does not contain the value zero.

• Why?
Hypothesis testing (cont’d)

- Note that the test of hypothesis (two-tailed) says: fail to reject $H_0 : \beta_1 = 0$ if

$$\frac{b_1 - 0}{\hat{\sigma}_{b_1}} > t_{\frac{\alpha}{2},n-2} \text{ or } \frac{b_1 - 0}{\hat{\sigma}_{b_1}} < -t_{\frac{\alpha}{2},n-2}.$$

- Equivalently, by multiplying both sides of expressions above by $\hat{\sigma}_{b_1}$ and subtracting b_1 from both sides also, note that we fail to reject when

$$0 > b_1 - t_{\frac{\alpha}{2},n-2}\hat{\sigma}_{b_1} \text{ and } 0 < b_1 + t_{\frac{\alpha}{2},n-2}\hat{\sigma}_{b_1}$$

in other words, when 0 is inside the $100(1 - \alpha)\% \text{ CI}$ for β_1.

- This applies only to two-sided tests.
Hypothesis testing (cont’d)

- JMP and SAS produce a \(p \)-value.

- The \(p \)-value is the smallest \(\alpha \)-level that still leads to rejecting \(H_0 \).

- A \(p \)-value of 0.001 means that if I conclude \(H_a \) I only have a 1 in a thousand chance of reaching the wrong conclusion.

- A \(p \)-value of 0.3 means that if I conclude \(H_a \) I have a 1 in 3 chances of reaching the wrong conclusion.

- Typically we choose \(H_a \) only if the chance of making the wrong choice is small, say below 5%. Thus, \(p \)-values of 0.05 or smaller lead to \(H_a \).

- The \(p \)-values produced by computer programs the test \(H_0 : \beta_1 = 0 \) versus \(H_a : \beta_1 \neq 0 \).
Hypothesis testing (cont’d)

• We can test any hypothesis that might seem appropriate for the application at hand. For example, we might wish to test

\[H_0 : \beta_1 = 250 \]
\[H_a : \beta_1 > 250, \]

if that makes sense from a subject-matter point of view.

• The appropriate test statistic is

\[t = \frac{b_1 - 250}{\hat{\sigma}_{b_1}} \]

and the rest is the same as in the one-tailed test described earlier.
Coefficient of correlation

• The coefficient of correlation r measures the linear association between two variables.

• r is defined to be between -1 and +1.

• Given n measurements x and y on a sample of units:

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$
Coefficient of correlation (cont’d)

• Since \(b_1 = \frac{SS_{xy}}{SS_{xx}} \), we can also compute \(r \) as

\[
r = b_1 \sqrt{\frac{SS_{xx}}{SS_{yy}}},
\]

so \(b_1 \) and \(r \) will always be of the same sign.

• A positive (negative) \(r \) means positive (negative) linear association between \(x \) and \(y \). An \(r \) close to zero means no linear association (but there can be nonlinear association!).

• Note that the correlation between \(x \) and itself is equal to 1 because:

\[
r_{xx} = \frac{SS_{xx}}{\sqrt{SS_{xx}SS_{xx}}} = \frac{SS_{xx}}{SS_{xx}} = 1.
\]
Correlation coefficient - Example

• Consider the five stores on which me measured advertising expenses and units of a product sold.

• From earlier example we had: $SS_{xx} = 10$, $SS_{xy} = 8$, $SS_{yy} = 8.8$ and $b_1 = 0.8$. Then

$$r = \frac{8}{\sqrt{10 \times 8.8}} = \frac{8}{9.38} = 0.85.$$

• Using the other formula:

$$r = 0.8 \times \sqrt{\frac{10}{8.8}} = 0.85.$$
Correlation coefficient - Test of hypothesis

• The sample correlation \(r \) estimates the population correlation \(\rho \).

• If \(r \) is close to zero, we tend to believe that the true population correlation is also zero.

• As in the case of \(\beta_1 \), we can test hypotheses about the true population correlation \(\rho \).

• Steps are the same as before:

 1. Set up hypothesis (one or two tailed) \(H_0 \) and \(H_a \) and choose \(\alpha \)
 2. Construct test statistic \(t \) and compare \(t \) to critical value from table.
 3. If statistic falls in critical region, reject \(H_0 \).
Correlation - Test of hypothesis (cont’d)

- For a two-tailed test, hypotheses are:

 \[H_0 : \rho = 0 \text{ versus } H_a : \rho \neq 0. \]

- Test statistic is given by:

 \[t = \frac{r \sqrt{n - 2}}{\sqrt{1 - r^2}} \]

- Test statistic is distributed as a \(t \) random variable with \(n - 2 \) degrees of freedom. Thus, for a test with level \(\alpha \), the critical value is \(t_{\alpha/2, n-2} \) from the \(t \) table.
Correlation - Test of hypothesis (cont’d)

- Decision is:
 - If $|t| > t_{\alpha/2,n-2}$: reject H_0.
 - If $|t| \leq t_{\alpha/2,n-2}$: fail to reject H_0.

- For a one-tailed test, the only change is in the formulation of H_a and in the critical value, that now is equal to $t_{\alpha,n-2}$.

- A test of hypothesis for ρ is equivalent to the test for β_1. If one test results in rejecting H_0, the other will too.

- Example in class.