Testing Nested Models

• Two models are *nested* if both contain the same terms and one has at least one additional term.

• Example:

\[
y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \epsilon
\]
(1)

\[
y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_4 x_1^2 + \beta_5 x_2^2 + \epsilon
\]
(2)

• Model (1) is *nested within* model (2).

• Model (1) is the **reduced** model and model (2) is the **full** model.
Testing Nested Models (cont’d)

- How do we decide whether the more complex (full) model contributes additional information about the association between y and the predictors?

- In example above, this is equivalent to testing $H_0 : \beta_4 = \beta_5 = 0$ versus $H_a : \text{at least one } \beta \neq 0$.

- Test consists in comparing the SSE for the reduced model (SSE_R) and the SSE for the complete model (SSE_C).

- $SSE_R > SSE_C$ always so question is whether the drop in SSE from fitting the complete model is ‘large enough’.
Testing Nested Models (cont’d)

- We use an F–test to compare nested models, one with k parameters (reduced) and another one with $k + p$ parameters (complete or full).

- Hypotheses: $H_0 : \beta_{k+1} = \beta_{k+2} = \ldots = \beta_{k+p} = 0$ versus $H_a : \text{At least one } \beta \neq 0$.

- Test statistic: $F = \frac{(SSE_R - SSE_C)}{\# \text{ of additional } \beta' s} \cdot \frac{SSE_C}{n - (k + p + 1)}$

- At level α, we compare the F–statistic to an F_{ν_1, ν_2} from table, where $\nu_1 = p$ and $\nu_2 = n - (k + p + 1)$.

- If $F \geq F_{\alpha, \nu_1, \nu_2}$, reject H_0.
Testing Nested Models (cont’d)

• See Example 4.10 on page 233.

• Steps are:

 1. Fit complete model with \(k + p \) \(\beta \)'s and get \(SSE_C \).
 2. Fit reduced model with \(k \) \(\beta \)'s and get \(SSE_R \).
 3. Set up hypotheses and choose \(\alpha \) value.
 4. Compute \(F \)–statistic and compare to table \(F_{\alpha,\nu_1,\nu_2} \).

• If test leads to rejecting \(H_0 \), then at least one of the additional terms in the model contributes information about the response.
Testing Nested Models (cont’d)

• Parsimonious models are preferable to big models as long as both have similar predictive power.

• A parsimonious model is one with a small number of predictors.

• If models are not nested, cannot use the F-test above to choose between one and another. Must rely on other sample statistics such as R^2_a and $RMSE$.

• In the end, choice of model is subjective.