AerE 311


Supplemental material:     Isentropic flow     Normal shocks     Oblique shocks     Expansion fans     Duct and Nozzle flows     Critical airfoils flows     Formula Sheet

  Homework  #1:  7.4,  7.8,   7.9,   7.10,   8.2

  Homework  #2:  8.3,  8.5,     Additionally, write computer program to replace table A: In particular

  Homework  #3:  8.7,  8.8,   8.16,   8.17

  Homework  #4:  9.1,  9.2: also find the value of the turning angle, theta,   9.3

  Homework  #5: Probs 9.7,  9.8,  9.9   And, write a program to solve eq. 9.23:


  Homework  #6:   Probs 9.10,  9.11,  9.13,  9.15   and


  Homework  #7:  9.16

  Homework  #8: probs   10.3,  10.4,   10.7,   10.8;   but first

    10.additional:  Add A/A* to your isentropic flow program: That is, add the option for the user to specify A/A*.
    Use Newton’s method to find both the supersonic and the subsonic Mach number.
    Print out all elements of a row in appendix A, for both Mach numbers. Provide sample output for A/A*=2 and 5.

  Homework  #9:
      10.9. In this problem regard the stated pressures to be P_a. Add e) P_a=0.4atm f) P_a=0.1atm;
      10.10;  10.12 (note that `sea level conditions' mean P=1atm and T=288K inside the test section.)

  Homework  #10:
10.13 and
   A converging-diverging nozzle diverges linearly after the throat:
   for x> 0.
   If A_exit=4A_throat and P_ambient=0.5P_0 what is the sonic area after the shock, i.e., A*_2/A_throat?
   What are the Mach numbers on either side of the shock? What is the position, x_s/x_exit, of the shock?
(Use the formulas derived in class, or your method of solution to 10.9.c.)

  Homework #11: 11.3, 11.4, 11.7

  Homework #12: 12.1, 12.3; but do not compare to 9.14. The problem should cite fig. 9.36

Final exam May 3 9:45-11:45 a.m.   Print Formula Sheet and bring it.