5.23

\[P(Z > z) = \sum_{x=1}^{\infty} P(Z > z|x)P(X = x) \]
\[= P(U_1 > z, \ldots, U_x > z|x)P(X = x) \]
\[= \sum_{x=1}^{\infty} \prod_{i=1}^{x} P(U_i > z)P(X = x) \text{ by independence of the } U_i's \]
\[= \sum_{x=1}^{\infty} P(U_i > z)^x P(X = x) \]
\[= \sum_{x=1}^{\infty} (1 - z)^x \frac{1}{(e-1)x!} \]
\[= \frac{1}{(e-1)} \sum_{x=1}^{\infty} \frac{(1-z)^x}{x!} \]
\[= \frac{e^{1-z} - 1}{e-1}, \quad 0 < z < 1 \]

5.24

Use \(f_X(x) = 1/\theta, F_X(x) = x/\theta, 0 < x < 1. \)
Let \(Y = X_{(n)}, Z = X_{(1)}. \) Then, from Theorem 5.4.6,
\[
f_{Z,Y}(z, y) = \frac{n!}{0!(n-2)!0!\frac{1}{\theta}} \left(\frac{z}{\theta} \right)^0 \left(\frac{y-z}{\theta} \right)^{n-2} \left(1 - \frac{y}{\theta} \right)^0 = \frac{n(n-1)}{\theta^n} (y-z)^{n-2}, \quad 0 < z < y < \theta.
\]

Now let \(W = Z/Y, Q = Y. \) Then \(Y = Q, Z = WQ, \) and \(|J| = q. \) Therefore,
\[
f_{W,Q}(w, q) = \frac{n(n-1)}{\theta^n} (q-qw)^{n-2}q = \frac{n(n-1)}{\theta^n} (1-w)^{n-2}q^{n-1}, 0 < w < 1, 0 < q < \theta.
\]
The joint pdf factors into functions of \(w \) and \(q, \) hence \(W \) and \(Q \) are independent.

5.27

a. \(f_{X(i)|X(j)}(u|v) = \frac{f_{X(i),X(j)}(u,v)}{f_{X(j)}(v)}. \) Consider tow cases, depending on which of \(i \) or \(j \) is greater.

Using the formulas from Theorem 5.4.4 and 5.4.6, and after cancellation, we obtain the following.
(i) If \(i < j \),

\[
f_{X(i|X(j))(u|v)} = \frac{(j - 1)!}{(i - 1)!(j - 1 - i)!} f_X(u) (F_X(u) - F_X(v))^j - i - 1 \left(1 - \frac{F_X(u)}{F_X(v)}\right)^j - i, \quad u < v.
\]

Note that this is the pdf of the \(i \)th order statistic from a sample of size \(j - 1 \), from a population with pdf given by the truncated distribution, \(f(u) = \frac{f_X(u)}{F_X(v)}, u < v \).

(ii) If \(i > j \) and \(u > v \),

\[
f_{X(i|X(j))(u|v)} = \frac{(n - j)!}{(n - 1)!(i - 1 - j)!} f_X(u) (1 - F_X(u))^{n - i} (F_X(u) - F_X(v))^{i - 1 - j} (1 - F_X(v))^{j - n}.
\]

This is the pdf of the \((i-j) \)th order statistic from a sample of size \(n - j \), form a population with pdf given by the truncated distribution, \(f(u) = \frac{f_X(u)}{1 - F_X(v)}, u < v \).

Additional Prob

1

Let \(F(X_{(n)}) = U_{(n)} \sim \text{unif}(0, 1) \), \(F(X_{(1)}) = U_{(1)} \sim \text{unif}(0, 1) \), then the joint pdf of \(U_{(n)} \) and \(U_{(1)} \) as \(f_{(1),(n)}(w, z) \) is follow:

\[
f_{(1),(n)}(w, z) = \frac{n!}{(n - 2)!} f(w)(F(z) - F(w))^{n - 2} f(z)
\]

\[
= n(n - 1)(z - w)^{n - 2}, \quad 0 < w < z < 1.
\]

\[
P((X_{(n)}) - (X_{(1)}) \geq p) = \int_0^{1-p} \int_{w+p}^1 n(n - 1)(z - w)^{n - 2} \, dz \, dw
\]

\[
= \int_0^{1-p} n(n - 1) \frac{(z - w)^{n - 1}}{n - 1} |w+p| \, dw
\]

\[
= \int_0^{1-p} n((1 - w)^{n - 1} - p^{n - 1}) \, dw
\]

\[
= -n \cdot \frac{(1 - w)^n}{n} |1 - p - np^{n - 1}(1 - p)
\]

\[
= 1 - p^n - np^{n - 1}(1 - p)
\]
a.

\[f(x) = k\Phi(x)\sin^2(x) \]
\[h(x) = \Phi(x)\sin^2(x) \]
\[g(x) = \Phi(x) \]
\[\frac{h(x)}{g(s)} = \sin^2(x) \leq 1 \Rightarrow M = 1. \]

Then to generate \(X \) from \(kh(x) \), conduct the following steps:
1) generate \(X^* \) from \(g \).
2) generate \(U \sim \text{unif}(0, 1) \).
3) if \(U g(X^*) < h(X^*) \), then \(X = X^* \), else return to 1).

b. To approximate \(EX^2 \), we could do the following:
1) use algorithm in a) to generate a large size iid sample \(\{X_i\}_{i=1}^n \).
2) compute
\[
\frac{1}{n} \sum_{i=1}^n X_i^2 \cdot \frac{h(X_i)}{g(X_i)} = \frac{1}{n} \sum_{i=1}^n X_i^2 \sin^2(X_i) \quad (1)
\]
\[
\frac{1}{n} \sum_{i=1}^n \frac{h(X_i)}{g(X_i)} = \frac{1}{n} \sum_{i=1}^n \sin^2(X_i) \quad (2)
\]

Then \((1)/(2) \rightarrow EX^2 = Var X \) in probability.

c. (First method)
Use empirical cdf to approximate \(P(0.3 < X < 1.2) \), that is, \(P(0.3 < X < 1.2) = \frac{1}{n} \sum_{i=1}^n I(0.3 < X_i < 1.2) \), where \(\{X_i\}_{i=1}^n \) are iid random variables.

(Second method)
Use importance sampling method to do the following:
1) use algorithm in a) to generate a large size random sample \(\{X_i\}_{i=1}^n \).
2) compute
\[
\frac{1}{n} \sum_{i=1}^n I(0.3 < X_I < 1.2) \cdot \frac{h(X_i)}{g(X_i)} = \frac{1}{n} \sum_{i=1}^n I(0.3 < X_I < 1.2)\sin^2(X_i) \quad (3)
\]
\[
\frac{1}{n} \sum_{i=1}^n \frac{h(X_i)}{g(X_i)} = \frac{1}{n} \sum_{i=1}^n \sin^2(X_i) \quad (4)
\]

Then \((3)/(4) \rightarrow P(0.3 < X_I < 1.2) \) in probability.

3

\(p(x) \leq 1 \), let \(h(x) = I(x \in [0, 1]^5) \) be the uniform density. It could be simulated by drawing 5 iid \(\text{unif}(0,1) \) coordinates \(x_i, 1 \leq i \leq 5 \).
Note 1. $h(x) \geq p(x)$. To get a single realization X^*, do the following:

1) generate $X^{**} = (X_1^{**}, X_2^{**}, X_3^{**}, X_4^{**}, X_5^{**})$ from h.
2) generate $U \sim \text{unif}(0, 1)$ which is independent from X^{**}.
3) if $Uh(X^{**}) = U < p(X^{**})$, set $X^* = X^{**}$, otherwise return to 1).