Recall ... simple bootstrap ...

Some common applications are

1) Estimation of \(\sqrt{\text{Var}_F T_n} \)

\[
\sqrt{\frac{1}{B-1} \sum_{i=1}^{B} (T_{ni} - \bar{T}_n)^2}
\]

This gets us a standard error for \(T_n \)

2) Bias of \(T_n \) as an estimator so \(\theta = \eta(F) \)

\[
\text{Bias}_F(T_n) = \mathbb{E}_F T_n - \eta(F)
\]

A standard methodology is to estimate \(F \) (with \(\hat{F} \)) and get \(B \) bootstrap versions of \(T_n \) and use

\[
T_{n^*} - \eta(\hat{F})
\]

as an estimated bias - and a "bias-corrected" version of \(T_n \) is then

\[
T_n - (T_{n^*} - \eta(\hat{F}))
\]
Note that in the case \hat{F} is the histogram/empirical CDF and $\hat{T}_n = \eta(\hat{F})$. This bias correction suggests a version of \hat{T}_n

$$\hat{T}_n - \left(\bar{T}_n^* - \eta(\hat{F}) \right) = 2\bar{T}_n - \bar{T}_n^*$$

"Examples" (of this bias-correction stuff)

a) $T_n = \text{sample median}$

$\Theta = \eta(F) = E_F \bar{Y}$ = "population" mean

an estimated bias of \bar{T}_n for Θ is

$$\bar{T}_n^* - \eta(\hat{F}) = \text{mean of } \hat{F}$$

So a bias-corrected version of \bar{T}_n is thus

$$\hat{T}_n = (\bar{T}_n^* - \eta(\hat{F}))$$

b) $T_n = \text{sample median}$

$\Theta = \eta(F) = F^{-1}(0.5) = \text{population median}$

Here $T_n = \eta(\text{empirical CDF}) = \eta(F)$

Estimated bias of \bar{T}_n for Θ is

$$\text{average bootstrap } \bar{T}_n^* - \eta(\hat{F}) = \text{sample median for data set sample bootstrap and a bias-corrected estimate}$$
2 \bar{T}_n = \frac{\bar{T}_n^*}{\hat{F}_n} \quad \text{average bootstrap sample median}

3) Confidence Limits: For some \(\Theta = \eta(F) \) – suppose that

\[T_n = \eta \left(\text{empirical dsn of} \ Y_1, Y_2, \ldots, Y_n \right) \]

Based on \(B \) bootstrapped values \(\bar{T}_{n1}^*, \bar{T}_{n2}^*, \ldots, \bar{T}_{nB}^* \) in order, these

\[\bar{T}_{n(1)}^* \leq \bar{T}_{n(2)}^* \leq \ldots \leq \bar{T}_{n(B)}^* \]

and find lower and upper \(\frac{\alpha}{2} \) points of this dsn of \(\bar{T}_{n}^* \)'s to use as end-points of an interval for \(\Theta \)

\[\text{For } K_L = \left\lfloor \frac{K}{2} (B+1) \right\rfloor \]

\[= \text{largest integer} \leq \frac{K}{2} (B+1) \]

and \(K_U = (B+1) - K_L \)

(these give indices of roughly \(\frac{K}{2} \) points of the generated dsn of \(\bar{T}^* \)'s) – my interval for \(\Theta \) is then

\[\left[\bar{T}_{n(K_L)}^*, \bar{T}_{n(K_U)}^* \right] \]

and this is often an approximate \((1-\alpha)\) level CI for \(\Theta = \eta(F) \)

?? ?? Why should this work – see panels 112-1124 of Kochlev
or Ch B of Efroim + Tibshirani or "handout" posted on 511 Web site — here's an outline

Suppose that there is a function \(m() \) s.t.

for \(\phi = m(\Theta) = m(\phi(F)) \)

and \(\hat{\phi} = m(T_n) = m(\phi(\gamma_1, \ldots, \gamma_n)) \)

for large \(n \)

\(\hat{\phi} \sim N(b, a^2) \)

then a \(CI \) for \(\phi \) is

\((\hat{\phi} - zc, \hat{\phi} + zc) \)

and a corresponding \(CI \) for \(\Theta \) is

\((\hat{\Theta} - zc, \hat{\Theta} + zc) \)

The argument you'll find in Kochler or handout is that

\[\left[T_n^*(K_c), T_n^*(K_u) \right] \]

approximates this (without having to know or use \(m() \))

This is called the "empirical percentile" bootstrap interval for \(\Theta \)