Recall the regression setting. Testing with

\[1 = \begin{pmatrix} 1 \end{pmatrix}, \quad X_i = \begin{pmatrix} 1 \mid x_1 \mid x_2 \mid \ldots \mid x_i \end{pmatrix} \]

Let \(P \) be the projection matrix onto \(C(X_i) \).

\[H_0: \beta_{p+1} = \beta_{p+2} = \ldots = \beta_r = 0 \quad \Leftrightarrow \quad H_0: \mathbb{E}[Y] = C(X_i) \]

Also, I can write this hypothesis in (testable) form:

\[H_0: \beta = 0 \]

For

\[C = \begin{pmatrix} \mathbf{0} & \mathbf{I} \\ (r-p) \times (r+1) & (r-p) \times (r-p) \end{pmatrix} \]

and we've agreed to call

\[\text{SS}_H = \left(\widehat{\beta}_{OLS} - \mathbf{0} \right)' \left(C(X'X)^{-1} \right)^{-1} \left(\widehat{\beta}_{OLS} - \mathbf{0} \right) \]

for testing \(H_0: \beta = 0 \). This is equivalent to the "full model / reduced model" paradigm e.g. of Neter, Wasserman, and friends. (See posted "handout" for a proof.)
Here elaborate on this paradigm:

\[
Y'Y = Y'(P - \frac{1}{n} \sum_{i=1}^{p} P_i) + (P - P_x) Y + Y'(P - P_x) Y + Y'(I - P_x) Y
\]

\[
= Y'P_y Y + Y'(P - P_x) Y + Y'(P - P_x) Y + Y'(I - P_x) Y
\]

\[
\frac{Y'Y - Y'P_y Y}{2} = \frac{Y'(P - \frac{1}{n} \sum_{i=1}^{p} P_i) Y}{2} + \frac{Y'(P - P_x) Y}{2} + \frac{Y'(I - P_x) Y}{2}
\]

\[
\begin{align*}
SST_{tot} & = Y'(I - P_x) Y \\
SSR_{full} & = \frac{Y'(P - \frac{1}{n} \sum_{i=1}^{p} P_i) Y}{2} \\
SSR_{reduced} & = \frac{Y'(P - P_x) Y}{2} \\
SSR_{error} & = \frac{Y'(I - P_x) Y}{2}
\end{align*}
\]

And it's common standard to organize this in an ANOVA table (for testing \(H_0: \beta_{p+1} = \ldots = \beta_r = 0 \) in \(MCR \))

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression ((x_1, \ldots, x_r))</td>
<td>(SSR_{full})</td>
<td>(\text{rank}(P - \frac{1}{n} \sum_{i=1}^{p} P_i) = (r+1) - 1 = r)</td>
</tr>
<tr>
<td>((x_{p+1}, \ldots, x_r))</td>
<td>(SSR_{reduced})</td>
<td>(\text{rank}(P - P_x) = (p+1) - 1 = p)</td>
</tr>
<tr>
<td>Error ((x_1, \ldots, x_r))</td>
<td>(SSR_{error})</td>
<td>(\text{rank}(P - P_x) = r - p)</td>
</tr>
<tr>
<td>Total (Y)</td>
<td>(\text{SSS}_{full})</td>
<td>(n - \text{rank}(X) = n - (r+1))</td>
</tr>
<tr>
<td>Total (Y)</td>
<td>(\text{SSS}_{tot})</td>
<td>(n - 1)</td>
</tr>
</tbody>
</table>
and sometimes people "reduction in SS notation" to describe

\[\mathbf{Y}'Y = \mathbf{Y}'\mathbf{P}_0 \mathbf{Y} + \mathbf{Y}'(\mathbf{P}_1 - \mathbf{P}_0) \mathbf{Y} + \mathbf{Y}'(\mathbf{P}_2 - \mathbf{P}_1) \mathbf{Y} + \mathbf{Y}'(\mathbf{I} - \mathbf{P}_2) \mathbf{Y} \]

\[\mathbb{R}(\beta_0) \quad \mathbb{R}(\beta_1 | \beta_0) \quad \mathbb{R}(\beta_2 | \beta_1, \beta_0) \]

and we can even take this business of breaking down \(\mathbf{Y}' \mathbf{Y} \) in pieces further — i.e., people talk about "Type I" or "sequential" sums of squares.

\[\mathbf{Y}' \mathbf{Y} = \mathbf{Y}' \mathbf{P}_0 \mathbf{Y} \quad \mathbb{R}(\beta_0) \]

\[+ \mathbf{Y}'(\mathbf{P}_1 - \mathbf{P}_0) \mathbf{Y} \quad \mathbb{R}(\beta_1 | \beta_0) \]

\[+ \mathbf{Y}'(\mathbf{P}_2 - \mathbf{P}_1) \mathbf{Y} \quad \mathbb{R}(\beta_2 | \beta_1, \beta_0) \]

\[+ \ldots \]

\[+ \mathbf{Y}'(\mathbf{I} - \mathbf{P}_r) \mathbf{Y} \quad \mathbb{R}(\beta_r | \beta_{r-1}, \ldots, \beta_0) \]

\[+ \mathbf{Y}'(\mathbf{I} - \mathbf{P}_X) \mathbf{Y} \quad \text{SSE} \quad \text{"hierarchical"} \]

And e.g., \(\mathbb{R}(\beta_2 | \beta_1, \beta_0) \) is an appropriate SS for testing.
\(H_0: \beta_2 = 0 \) in a model that includes only (a constant and) predictor \(x_1, x_2 \) — i.e., in a LM where the model matrix \(X_2 \) — it is not the correct numerator SS for testing \(H_0: \beta_2 = 0 \) in the full model —

A different possibility is the "SAS type III SS's" — if

\[
X_{\cdot i} = X \text{ with } x_i \text{ deleted}
\]

\[
Y' (P_X - P_{X_{\cdot i}}) Y = R (\beta_i; \beta_0, \ldots, \beta_{i-1}, \beta_{i+1}, \ldots, \beta_r)
\]

is the appropriate numerator SS for testing \(H_0: \beta_i = 0 \) in full model.

It's easy to apply our theorem about independence of quadratic forms (SS's) in the normal Gauss-Markov model to conclude that pairs of sequential sums of squares are independent — it's not much harder to argue that the whole set of sequential sums of squares are mutually independent — (see Kshohler 4.5 on page 333) —

This is the famous Cochran Theorem.