Further, I make confidence limits for \(\beta_j \) as
\[
\text{lower limit}: \hat{\beta}_j - t_{\alpha/2, n-k} \sqrt{\text{MSE} \left(G(D' D)^{-1} \right)} \\
\text{upper limit}: \hat{\beta}_j + t_{\alpha, n-k} \sqrt{\text{MSE} \left(G(D' D)^{-1} \right)}
\]

Inference for a simple mean response
Suppose I wish to estimate \(f(\xi, \beta) \). Fact 4 suggests
\[
f(\xi, \kappa_0) \sim N(f(\xi, \beta), \sigma^2 G(D' D)^{-1} G')
\]
and a \(t_{n-k} \) reference distribution

\[
\hat{G} = \left(\begin{array}{c} \frac{\partial f(\xi, \beta)}{\partial \beta_j} \\ \vdots \\ \frac{\partial f(\xi, \beta)}{\partial \beta_j} \end{array} \right)_{1 \times k}
\]

and approximate confidence limits for \(f(\xi, \beta) \) become
\[
f(\xi, \kappa_0) \pm t_{\alpha/2, n-k} \sqrt{\text{MSE} \left(G(D' D)^{-1} \right)}
\]

where
\[
G = \left(\begin{array}{c} \frac{\partial f(\xi, \beta)}{\partial \beta_j} \\ \vdots \\ \frac{\partial f(\xi, \beta)}{\partial \beta_j} \end{array} \right)_{1 \times k}
\]

Reasoning exactly as for inference for a simple \(\beta_j \), I can test \(H_0: f(\xi, \beta) = \beta \) using
\[
T = \frac{f(\xi, \kappa_0) - \beta}{\sqrt{\text{MSE} \left(G(D' D)^{-1} \right)}}
\]

Prediction
Suppose that in the future I will observe \(y^* \) that is normal with mean \(h(\beta) \) and variance \(\sigma^2 \) independent of \(y_1, y_2, \ldots, y_k \). For example, \(y^* \) might be a new observation at \(\xi \) in this case
\[
h(\beta) = f(\xi, \beta) \quad \text{and} \quad n = 1
\]
or \(y^* \) might be a difference in \(z \) new observations at \(\xi^1, \xi^2 \) in this case
\[
h(\beta) = f(\xi^1, \beta) - f(\xi^2, \beta) \quad \text{and} \quad n = 2
The standard reasoning leads to prediction limits for y^*

$$h(b_{ols}) = t \sqrt{\text{MSE}} \sqrt{\hat{y} + \hat{\Sigma} (\hat{\beta}' \hat{\Sigma})^{-1} \hat{\beta}}$$

Methods Based on the Large n Behavior of the Likelihood Function

The MNN likelihood function for the nonlinear model is

$$L(\beta, \sigma^2 | Y) = (2\pi)^{-r} \frac{1}{J^n} \exp \left(-\frac{1}{2\sigma^2} \sum (y_i - f(x_i, \beta))^2 \right)$$

$$l(\theta) = l(\theta_1, \theta_2)$$

Suppose that for every θ_1, $\hat{\theta}_2(\theta_1)$ maximizes

$$l(\theta_1, \hat{\theta}_2)$$

For choices of θ_1. As it turns out, a large sample confidence set for θ_1 is

$$\{ \theta_1 | l(\theta_1, \hat{\theta}_2(\theta_1)) > (1-\alpha) \text{ level} \}$$

$$l(\hat{\theta}_{MLE}) - \frac{1}{2} \chi^2_p$$

upper α pt of χ^2_p and the "log-likelihood function" is

$$\lambda(\beta, \sigma^2) = -\frac{n}{2} \log 2\pi - \frac{n}{2} \log \sigma^2$$

$$- \frac{1}{2 \sigma^2} \sum (y_i - f(x_i, \beta))^2$$

Temporarily think of θ as a general parameter vector of dimension r and a general log-likelihood (see Section 7.3.2 of class outline)

$$\theta = (\theta_1)_{p \times 1} \quad (\theta_2)_{(r-p) \times 1}$$

This is the set of all θ_1's for which there is a θ_2 so that $l(\theta_1, \theta_2)$ is within $\frac{1}{2} \chi^2_p$ of the maximum of the log-likelihood.

BTW $l(\theta_1, \hat{\theta}_2(\theta_1)) = \lambda^*(\theta_1)$ is sometimes called the profile log-likelihood for θ_1 and this prescription is then "the set of all θ_1's with profile log-likelihood within $\frac{1}{2} \chi^2_p$ of the maximum."
Profile log-likelihood for σ^2

$$
\frac{-n}{2} \log \sigma^2 - \frac{1}{2} \log \frac{SSE}{n} - \frac{1}{2} \frac{SSE}{\sigma^2}
$$

Application #1

For any given r^2, $x(\theta, \sigma^2)$ is maximized as function of σ^2 by \bar{y}, so

$$
\hat{\theta}_1 = \bar{y} - \frac{1}{2} \log \frac{SSE}{n} - \frac{1}{2} \frac{SSE}{\sigma^2}
$$

Now make applications of this to the

nonlinear model

\[l(\theta_1, \theta_2) \]

Contours:

\[\frac{-n}{2} \log \sigma^2 - \frac{n}{2} \log \frac{SSE}{n} - \frac{1}{2} \frac{SSE}{\sigma^2} = C \]

contour plot for $l(\theta_1, \theta_2)$

\[\hat{\theta}_2 = \bar{y} \]

maximum $l(\theta_2) = l(\hat{\theta}_2)$
This is an alternative to approximating

\[\frac{SSE}{\hat{\sigma}^2} \sim \chi^2_{n-k} \]

as in the LM case and using

\[
\left(\begin{array}{c}
\frac{SSE}{\text{upper } \chi^2} \\
\frac{SSE}{\text{lower } \chi^2}
\end{array} \right)
\]

Application #2 \[\theta_1 = \beta \]

For any \(\beta \), \(\lambda(\beta, \hat{\sigma}^2) \) is maximized as a function of \(\hat{\sigma}^2 \) by

\[\hat{\sigma}^2(\beta) = \frac{1}{n} \sum (y_i - f(\Xi_i, \beta))^2 \]

So we have

\[\lambda(\theta_1, \hat{\sigma}^2(\theta_1)) = \lambda(\beta, \hat{\sigma}^2(\beta)) \]

and

\[\lambda(\theta_{MLE}) = \lambda(\hat{\theta}_1, \hat{\sigma}^2(\theta_1)) \]

= \{ \beta | \Sigma (y_i - f(\Xi_i, \beta))^2 < \text{SSE} e^{\frac{1}{2} \chi^2_k} \}

So an approximate confidence region for \(\beta \) is

\[\{ \beta | \log \Sigma (y_i - f(\Xi_i, \beta))^2 - \log \text{SSE} < \frac{1}{n} \chi^2_{k+\alpha} \} \]

\(k = 2 \) example

\[\beta_2 \]

contour plot of \[n \hat{\sigma}^2(\beta) = \Sigma (y_i - f(\Xi_i, \beta))^2 \]

contour plot of \(\lambda_{MLE} \) in more detail.
As it turns out in the linear model, an exact confidence set is
\[\{ \beta \in \mathbb{R}^k \mid \Sigma (y_i - f(\xi_i, \beta))^2 < \text{SSE} \left(1 + \frac{k}{n-k} F_{k, n-k} \right) \} \]
upper \(\alpha \) pt for \((1-\alpha)\) level confidence

The "Beale" region — this is usually just carried over to the non-linear model

\[(1 + \frac{1}{n-k} F_{k, n-k}) = (1 + \frac{\hat{e}_0^2}{n-k}) \]
upper \(\alpha \) pt for \((1-\alpha)\) level confidence

Application 43: \(\beta_1 = \beta_j \)
(\text{confidence regions for single entries of } \beta) — the same reasoning as before leads to
\[\{ \beta_j \mid \min_{\beta_j} \Sigma (y_i - f(\xi_i, \beta_j))^2 < \text{SSE} \} \]
Appealing to exact theory for the LM case it's common to replace \(e_t^2 \) with

Cartoon \(k=2 \) (contour plot \(\Sigma (y_i - f(\xi_i, \beta))^2 \))

\begin{align*}
\text{CI for } \beta_1 & \quad \text{CI for } \beta_2 \\
\text{CI for } \beta_1 & \quad \text{CI for } \beta_2 \\
\text{contour when } \Sigma (y_i - f(\xi_i, \beta))^2 = \text{SSE} (1 + \frac{\hat{e}_0^2}{n-2}) & \quad \text{contour when } \Sigma (y_i - f(\xi_i, \beta))^2 = \text{SSE} (1 + \frac{\hat{e}_0^2}{n-2})
\end{align*}
BTW... folklore is that these regions do better (in terms of holding nominal coverage levels) than inferences made on basis of maximum likelihood theory for (BOls, $\frac{SSR}{n}$) under

Second Generalization of the LM... Mixed Linear Models. These are models that can be written in the form

(usually covariance matrices for u, ε are assumed to depend upon a few parameters... usually thought of as "variance components")

It is standard to assume that u and ε are uncorrelated, so if I call

\[Var(\varepsilon) = R \]
\[Var(u) = G \]

\[E\left(\begin{pmatrix} u \\ \varepsilon \end{pmatrix}\right) = 0 \]
\[Var\left(\begin{pmatrix} u \\ \varepsilon \end{pmatrix}\right) = \left(\begin{array}{cc} G & 0 \\ 0 & R \end{array}\right) \]

\[Var\left(\begin{pmatrix} Z'GZ + \varepsilon \\ \varepsilon \end{pmatrix}\right) \]

\[EY = E(X\beta + Zu + \varepsilon) = X\beta \]
\[VarY = Var(Zu + \varepsilon) \]
\[= Var(zu) + Var(\varepsilon) \]
\[= ZGZ' + R \]

Example A "One way random effects model"
A "batch" process makes "widgets" -

Sample 2 widgets from each of 3 batches and measure hardness:

\[y_{ij} = \text{measured hardness of } j \text{th widget from batch } i \]

I might model as a within-batch random effect:

\[y_{ij} = M + \alpha_i + \epsilon_{ij} \]

Some "process average hardness" random effect for batch i

and with this notation I can write

\[
\begin{pmatrix}
 y_{11} \\
 y_{12} \\
 y_{21} \\
 y_{22} \\
 y_{31} \\
 y_{32}
\end{pmatrix} = \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} M \end{pmatrix} + \begin{pmatrix}
 100 \\
 100 \\
 010 \\
 010 \\
 001 \\
 001
\end{pmatrix} \begin{pmatrix}
 \alpha_1 \\
 \alpha_2 \\
 \alpha_3
\end{pmatrix} + \begin{pmatrix} \epsilon_{11} \\
 \epsilon_{12} \\
 \epsilon_{21} \\
 \epsilon_{22} \\
 \epsilon_{31} \\
 \epsilon_{32}
\end{pmatrix}
\]

\[E(Y) = \begin{pmatrix} M \end{pmatrix} \text{ and } \ Var(Y) = G \ Opportune \ + \ R \]

\[G = \begin{pmatrix}
 100 \\
 100 \\
 010 \\
 010 \\
 001 \\
 001
\end{pmatrix} \begin{pmatrix}
 100 & 100 & 010 & 010 & 001 & 001
\end{pmatrix} = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{pmatrix} \begin{pmatrix}
 100 & 100 & 010 & 010 & 001 & 001
\end{pmatrix} \]

\[\text{Var} \begin{pmatrix} \alpha_1 \\
 \alpha_2 \\
 \alpha_3
\end{pmatrix} = \begin{pmatrix} \sigma^2 & 0 & 0 \\
 0 & \sigma^2 & 0 \\
 0 & 0 & \sigma^2
\end{pmatrix} \]

\[E(\varepsilon) = 0 \text{ and } \ Var(\varepsilon) = \sigma^2 I \]

\[E(\varepsilon) = 0 \text{ and } \ Var(\varepsilon) = \sigma^2 I \]

\[\begin{pmatrix} \alpha_1 \\
 \alpha_2 \\
 \alpha_3
\end{pmatrix} \begin{pmatrix} \sigma^2 \end{pmatrix} = G \]

\[\text{Var} \begin{pmatrix} \alpha_1 \\
 \alpha_2 \\
 \alpha_3
\end{pmatrix} = \begin{pmatrix} \sigma^2 \end{pmatrix} \]

\[\begin{pmatrix} \alpha_1 \\
 \alpha_2 \\
 \alpha_3
\end{pmatrix} \begin{pmatrix} \sigma^2 \end{pmatrix} = G \]

\[\text{Var} \begin{pmatrix} \alpha_1 \\
 \alpha_2 \\
 \alpha_3
\end{pmatrix} = \begin{pmatrix} \sigma^2 \end{pmatrix} \]

\[\text{Var} \begin{pmatrix} \alpha_1 \\
 \alpha_2 \\
 \alpha_3
\end{pmatrix} = \begin{pmatrix} \sigma^2 \end{pmatrix} \]

\[\text{Var} \begin{pmatrix} \alpha_1 \\
 \alpha_2 \\
 \alpha_3
\end{pmatrix} = \begin{pmatrix} \sigma^2 \end{pmatrix} \]

\[\text{Var} \begin{pmatrix} \alpha_1 \\
 \alpha_2 \\
 \alpha_3
\end{pmatrix} = \begin{pmatrix} \sigma^2 \end{pmatrix} \]
\[
\begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
+ \gamma^2 I
\]

\[
= \begin{pmatrix}
\gamma \alpha^2 & \gamma \alpha^2 & \gamma \alpha^2 & \gamma \alpha^2 \\
\gamma \alpha^2 & \gamma \alpha^2 & \gamma \alpha^2 & \gamma \alpha^2 \\
0 & \text{same} & 0 & \text{same} \\
0 & \text{same} & 0 & \text{same}
\end{pmatrix}
\]

Kronecker product: For \(A = (a_{ij}) \) rxc and \(B = (b_{ij}) \) sx d, \(A \otimes B \) is an rxc matrix of sx d matrices where in the \(i \)th row and \(j \)th column is \(a_{ij} B \).

For the \(k \)th analysis of specimen \(i \) by chemist \(j \),

\[
y_{ijk} = \mu + \alpha_i + \beta_j + \epsilon_{ijk}
\]

Example B: A "Two Way Mixed Effects model Without Interaction"

\(2 \) analytical chemists each make \(2 \) analyses on same two specimens (each is split into \(4 \) parts)
How to write in "standard form"?

With

\[
E(x_1) = \bar{x}, \quad \text{Var}(x_2) = \sigma_x^2 I,
\]
\[
E(\varepsilon) = 0, \quad \text{Var}(\varepsilon) = \sigma^2 I.
\]

I might write this model (assuming \(x_1\)'s and \(\varepsilon\)'s are not correlated) as

\[
\begin{pmatrix}
Y \\
\end{pmatrix} = \begin{pmatrix}
X \\
\end{pmatrix} \beta + \begin{pmatrix}
\varepsilon \\
\end{pmatrix}
\]

\[
\text{Var}(Y) = \sigma_x^2 \beta \beta' + \sigma^2 I
\]

\[
= \sigma_x^2 \begin{pmatrix} I & J \\ J' & I \end{pmatrix} + \sigma^2 I
\]

Again, this is not the usual LM (not even an Aitken version).

Estimation in the Mixed Linear Model?
Consider normal maximum likelihood...

With

\[
V = ZGZ' + R
\]

\[
\text{usally a function of variance components}
\]

\[
\sigma_1^2, \sigma_2^2, \ldots, \sigma_p^2
\]

Write \(V(\sigma^2)\) and note that the normal likelihood function is...