10.1

(a) $\beta_0 = 4.7$
This says that when the U.S. market is flat, the average overseas return will be 4.7%.

(b) $\beta_1 = 0.166$
This number indicates for every 1% increase in the U.S. market, the overseas return will increase 0.166%.

(c) $y_i = 4.7 + 0.166x_i + e_i$, where e_i denotes the variation in overseas returns.
The scatterplot here shows a fairly strong linear relationship that is also positive.

\[y = 2.666 + 0.627x \]

Linear Fit

\[T\text{-bill} = 2.6662262 + 0.6269356 \text{ Inflation} \]

Summary of Fit

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R\text{Square}</td>
<td>0.448878</td>
</tr>
<tr>
<td>R\text{Square} Adj</td>
<td>0.437631</td>
</tr>
<tr>
<td>Root Mean Square Error</td>
<td>2.18016</td>
</tr>
<tr>
<td>Mean of Response</td>
<td>5.198431</td>
</tr>
<tr>
<td>Observations (or Sum Wgts)</td>
<td>51</td>
</tr>
</tbody>
</table>

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Ratio</th>
<th>Prob>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>189.69399</td>
<td>189.694</td>
<td>39.9096</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>49</td>
<td>232.90189</td>
<td>4.753</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Total</td>
<td>50</td>
<td>422.59587</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter Estimates

| Term | Estimate | Std Error | t Ratio | Prob>|t| |
|--------|----------|-----------|---------|------|
| Intercept | 2.6662262 | 0.503848 | 5.29 | <.0001 |
| Influence | 0.6279356 | 0.099239 | 6.32 | <.0001 |

\[b_1 = 0.627 \]

\[\text{std error } b_1 = 0.0992 \]

\[H_0: \beta_1 = 0 \quad \text{vs.} \quad H_a: \beta_1 > 0 \]

\[t = \frac{0.627}{0.0992} = 6.32 \]

\[p\text{-value} = 3.75116 \times 10^{-8} \quad \approx 0 \]

There is significant evidence to conclude \(\beta_1 > 0 \).
10.15

(a) If there is no inflation in a particular year,
\(\beta_0 \) represents the return of Treasuries. In order
for the government to issue treasury bills,
there must be a positive return, hence we
should expect \(\beta_0 > 0 \).

(b) JMP estimates:
\[
\hat{\beta}_0 = 2.6666
\]
Std error \(\hat{\beta}_0 = 0.5038 \)

(c) \(H_0: \beta = 0 \) vs. \(H_a: \beta > 0 \).

\[
t = \frac{2.6666}{0.5038} = 5.29
\]

p-value : \(1.420606 \times 10^{-6} \approx 0 \)

Yes, there is sufficient evidence to conclude \(\beta_0 > 0 \).

(d) \(\beta_0 \pm t(95,49) \) std error \(\hat{\beta}_0 \)

\[
2.6666 \pm (2.009)(0.5038)
\]

10.21a

(a) \(\hat{y} = 2.6666 + 0.627(3.7) \)

\[
\hat{y} = 4.9859
\]

(b) (cont. on next page)
10.26

(b) Inflation Prediction

<table>
<thead>
<tr>
<th>Lower 95%</th>
<th>Upper 95%</th>
<th>from JMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7</td>
<td>0.56143228</td>
<td>9.41034354</td>
</tr>
</tbody>
</table>

10.30

(a) 90% CI for the Mean from JMP

<table>
<thead>
<tr>
<th>Lower 95%</th>
<th>Upper 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7</td>
<td>4.47096598</td>
</tr>
<tr>
<td></td>
<td>5.50080984</td>
</tr>
</tbody>
</table>

(b) We would need to find the std error only.

10.35

\[\sum (x_i - \bar{x})^2 = (n-1)S_x^2 \]
\[= (50)(3.1068397)^2 \]
\[= 482.62 \]

\[SE_{b_1} = \frac{s}{\sqrt{\sum (x_i - \bar{x})^2}} \]
\[= \frac{2.1801}{\sqrt{482.62}} \]
\[= .09924 \]

\[10.36 \quad S_x^2 = 9.6525 \]

\[SE_{y^*} = s \sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum (x_i - \bar{x})^2}} \]
\[= (2.1801) \sqrt{1 + \frac{1}{51} + \frac{(3.7 - 5.198)^2}{482.62}} \]
\[= 2.206 \]
10.36 (cont.)

\[
\hat{y} \pm t\cdot SE_{\hat{y}} \\
\hat{y} = 4.9859
\]

\[
4.9859 \pm (2.009)(2.206)
\]

\[
4.9859 \pm 4.4319
\]

\[
(0.554, 9.4178)
\]

10.37

\[H_0: \beta_1 = 0 \text{ vs. } H_a: \beta_1 \neq 0.\]

\[
t = 6.32
\]

\[
F = 39.9096 \quad \text{from earlier JMP output}
\]

\[
t^2 = F
\]

\[
p-value < .0001
\]
Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Ratio</th>
<th>Prob > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>189.69399</td>
<td>189.694</td>
<td>39.9096</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>49</td>
<td>232.90169</td>
<td>4.753</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Total</td>
<td>50</td>
<td>422.59568</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) ANOVA Equation

\[\text{SS}_{\text{Total}} = \text{SS}_{\text{Model}} + \text{SS}_{\text{Error}} \]
\[= 189.69399 + 232.90169 \]
\[= 422.59568 \]

(b) Total df = Regression df + Residual df

\[n-1 = 1 + n-2 \]
\[50 = 1 + (51-2) \]
\[= 1 + 49 \]
\[= 50 \]

(c) \[\text{MS}_{\text{Res}} = \frac{232.90169}{49} = 4.753096 \]

\[\text{MS}_{\text{Reg}} = \frac{189.69399}{1} = 189.69399 \]

(d) \[F = \frac{\text{MS}_{\text{Reg}}}{\text{MS}_{\text{Res}}} = \frac{189.69399}{4.753096} = 39.9096 \]
10.39

(a) \(R^2 = \frac{SS_{\text{reg}}}{SS_{\text{total}}} = \frac{189.69399}{422.59567} = .4489 \)

(b) \(S = \sqrt{MS_{\text{res}}} = \sqrt{4.753} = 2.1801 \)
2. (a)

Bivariate Fit of y By x

\[y = 2706.9613 + 372.28517x \]

\[r = +\sqrt{0.637893} = +0.80 \]

\[y = 3376.7726 + 312.35408x \]

\[r = +\sqrt{0.281} = +0.53 \]

The correlation drops when two data points with the largest x values are excluded. Note that these two points (circled in the scatterplot) have x value above \bar{x} and y value above \bar{y}. So we would expect a higher correlation when the points are included in the analysis.
2. (b)
\[y = 2706.968B + 372.28517 (5) \]
\[= 4568.39 \]

c. There appears to be nonconstant variance. As \(x \) increases, variation in \(y \) tends to increase. But the SLR model must satisfy the assumption of constant variance.
The nonconstant variance appears to be fixed. We observe on data point (circled) with a large residual. Under the change of scale, a SLR model seems quite appropriate.

(e) \[\hat{y}' = 24.57183 + 16.832139 \times' \]
\[R^2 = 0.614332 \]
Hence, 61.4% of the raw variation in \(y' \) is accounted for using an equation linear in \(x' \).

(f) \(x = 5 \Rightarrow x' = 2.2361 \)
\[\hat{y}' = 24.57183 + 16.832139(2.2361) = 62.21 \]
\[\hat{y} = (\hat{y}')^2 = (62.21)^2 = 3870.10 \]

(g) Std error: 23.88 (from above JMP output)
This measures variation in root reimbursed hospital cost for a fixed length of stay.
\[df = 33 - 2 = 31 \quad L = \chi^2_{31, 0.975} = 17.539 \quad U = \chi^2_{31, 0.025} = 48.232 \]
95% CI for \(\delta \): \[\left(\frac{S.E}{\sqrt{n-2}}, \frac{S.E}{\sqrt{n-2}} \right) = (19.14, 31.75) \]
(h) Parameter Estimates

| Term | Estimate | Std Error | t Ratio | Prob>|t| |
|----------|----------|-----------|---------|-----|
| Intercept| 24.57183 | 9.6986527 | 2.53 | 0.0166 |
| x | 16.832138| 2.395323 | 7.03 | <0.0001 |

\[SE_{b_1} = 2.395323 \]

\[S = 23.88 \text{ from part (g)} \]

\[\sum (x_i - \bar{x})^2 = (n-1)S^2 = (32)(1.7622)^2 = 99.3712 \]

\[SE_{b_1} = \frac{S}{\sqrt{\sum (x_i - \bar{x})^2}} = \frac{23.88}{\sqrt{99.3712}} = 2.3955 \]

(i) 95% CI for \(\beta_1 \)

\[b_1 \pm t_{(31, 0.975)} SE_{b_1} = 16.83 \pm (2.040)(2.395) \]

\[14.83 \pm 4.89 \]

\[(11.94, 21.72) \]

The 95% CI does not contain zero.

Hence reject \(H_0 : \beta_1 = 0 \) and conclude \(\beta_1 \neq 0 \).

(j) 95% CI for \(\mu_{y|x} \)

\[\hat{y} \pm t_{(31, 0.975)} SE_{\hat{y}} \]

\[62.21 \pm (2.040)(23.88) \sqrt{\frac{1}{33} + \frac{(2.2861 - 3.66)^2}{99.3712}} \]

\[62.21 \pm 10.97 \]

\[(51.24, 73.18) \]

95% CI for median reimbursed expense \(x = 5 \) is \((26.25, 54.5363) \).
95% prediction Interval for \(y' \) when \(x = 5 \):

\[
\hat{y} \pm t(31, 975) \times \sqrt{1 + \frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum(x_i - \bar{x})^2}}
\]

\[
62.21 \pm (2.040)(23.88)\sqrt{1 + \frac{1}{33} + \frac{(2.2861 - 3.66)^2}{99.8712}}
\]

\[
62.21 \pm 49.94
\]

(12.27, 112.15)
See output(***)

95% PI for \(y \) when \(x = 5 \)

(150.55, 12577.62)

(\(x = 365 \) is outside the range of the data set.
Hence, this is extrapolation.

PI for \(y \) when \(x = 365 \)

(255.94^2, 436.86^2) = (155505, 190410)

See output (***)

This is not useful from a practical standpoint since the interval is so wide.
<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>x'</th>
<th>y'</th>
<th>Lower 95% Mean y'</th>
<th>Upper 95% Mean y'</th>
<th>Lower 95% Individual y'</th>
<th>Upper 95% Individual y'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.50</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Note: The values in the table are placeholders for demonstration purposes. Actual values should be used in the analysis.
Bivariate Fit of y By x

Transformed Fit Sqrt to Sqrt

\[\sqrt{y} = 24.57183 + 16.832138 \sqrt{x} \]

Summary of Fit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSquare</td>
<td>0.614332</td>
</tr>
<tr>
<td>RSquare Adj</td>
<td>0.601891</td>
</tr>
<tr>
<td>Root Mean Square Error</td>
<td>23.87776</td>
</tr>
<tr>
<td>Mean of Response</td>
<td>86.14779</td>
</tr>
<tr>
<td>Observations (or Sum Wgts)</td>
<td>33</td>
</tr>
</tbody>
</table>

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Ratio</th>
<th>Prob > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>28153.839</td>
<td>28153.8</td>
<td>49.3799</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>31</td>
<td>17672.572</td>
<td>570.1</td>
<td>1.1708</td>
<td><.0001</td>
</tr>
<tr>
<td>C. Total</td>
<td>32</td>
<td>45828.411</td>
<td>1200.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter Estimates

| Term | Estimate | Std Error | t Ratio | Prob>|t| |
|-----------|----------|-----------|---------|------|
| Intercept | 24.57183 | 9.898527 | 2.53 | 0.0166 |
| Sqrt(x) | 16.832138| 2.395323 | 7.03 | <.0001 |

Fit Measured on Original Scale

- Sum of Squared Error: 723382931
- Root Mean Square Error: 4830.6245
- RSquare: 0.6354902
- Sum of Residuals: 17674.572

(n) See x

I would further investigate since $40,000 is considerably above the prediction limits for $x = 30$.